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ABSTRACT
In this paper, a homogenized constitutive model is established to analyze the mechanical behavior of continuous fiber reinforced ceramic matrix composites (CFCC) with overall anisotropic damage. The homogenization method is used for unit cell to derive the elastic material properties of composites, and the results are compared well with that of rule of mixture and average method. An overall anisotropic damage tensor for the whole composite is used to describe all types of damage that composite undergoes, such as matrix cracking, fiber breakage, and interfacial damage between matrix and fiber. The macro-microscopic scale approach is incorporated into the Finite Element Method (FEM). The numerical calculation is carried out to compute the macroscopic stresses-strains and to predict the onset and evolution of anisotropic damage for composite laminate with different stacking sequences. Some results are compared well with experimental results in literature [1]. 

1. INTRODUCTION
Damage phenomena in composite materials are very complex due to significant heterogeneities and interactions between micro-constituents. The homogenization method is advantageous to derive macroscopic constitutive laws which account for the micro-properties of the components of a material, and it has been extensively used to analyze the mechanical behaviors of polymeric or metal matrix composites in recent years [2-4]. Only a few studies were conducted on CFCC, and most of them were limited to unidirectional and isotropic type of damage behavior of composites [5-8]. These limit their range of applicability in describing the anisotropic damage behavior of composites with different types of laminate.

In this paper, the homogenization method and continuum damage theory are used jointly to get the macroscopic constitutive model with the anisotropic damage of the CFCC at room temperature. The micro-level analysis is conducted using homo- genization method for a unit-cell to provide the effective material properties of composites for macro-analysis. The continuum damage theory is applied to obtain overall anisotropic damage which represent all types of damage that composite undergoes. By using thermodynamic theory, the damage evolution equation can be established, and the damage initiation and propagation and their influences on the global performance of the composites can also be studied. A homogeneous-damage finite element analysis with anisotropic damage criterion is conducted to obtain the mechanical behaviors of different types of laminate. The main objective of this paper is to discuss the following problems  (i) the application of homogenization method to obtain the effective composite material properties, (ii) the analysis of non-linear stress-strain behaviors of brittle matrix composite materials with overall anisotropic damage, and (iii) the analysis of anisotropic elastic-brittle damage evolution mechanism. The incremental load is applied to the macroscopic finite element analysis in order to capture progressive damage in the specimen. Numerical examples are given, and the results are compared well with other experimental data in the literature [1]. 

2. HOMOGENIZATION METHOD
The homogenization method [9,10] supposes that the microstructure of composites occupies a fixed heterogeneous region with characteristic length (. The theory asserts that if the selected Representative Volume Element (RVE) is infinitesimally small, the actual displacement, u( tends to the homogenized displacement field, u0, which is the global solution of the governing equations whose coefficients have been homogenized.
The microstructure of composites is assumed to be locally periodic (Y-periodic) with a period defined by a Statistically Homogeneous Volume Element, we usually call it unit cell ( (Fig.1(b)). Let x be a macroscopic coordinate vector in macro domain ( (Fig.1 (a)), and y=x/( be a microscopic position vector in micro domain (. Here, ( is the characteristic length, which denotes a very small positive number compared with the dimension of (, and y=x/( is regarded as a stretched co-ordinate vector in the microscopic domain.
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(a) Macroscopic
(b) Microscopic coordinate (unit cell)

Fig.1. Macroscopic and microscopic structures.

An asymptotic expansion of the displacement field is:
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With consideration of the indirect differentiation rule, the strain field can be expanded as: 
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The stress field:
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The stresses and displacements fields satisfy the following equations on 
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Here, Fi is a prescribed stress on the portion 
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 of the boundary of (, and 
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 is the prescribed displacement boundary portion. 

Substituting Eqs. (1), (3) into Eqs.(4a) and (4b), we have:
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(5b)

To solve Eqn. (5b), the following characteristic function is introduced:
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Substituting Eq.(6a) into Eq.(5b), and taking into account arbitrariness of the macroscopic strain field,
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where,   
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The weak form boundary value problem defined by Eqs.(6-8) can be solved using FEM. The detailed process was described in the literature [11-13].
Then, the solution 
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By taking the mean value, the macroscopic stress becomes
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here, 
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 are called as homogenized elastic properties which define equivalent homogeneous material, and are independent of x.
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where YA is the area (volume in 3-D) of the unit cell. 

Therefore, the macroscopic stress 
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 are the solutions of the following well-posed elasticity problem: 
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The effective stress-strain constitutive relation is described by Eq. (10). 

3. THE CONSTITUTIVE EQUATION WITH ANISOTROPIC DAMAGE

3.1. Damage tensor.

The effective stress concept [14,15] is used in the present work. The relation between the Cauchy stress tensor and the effective Cauchy stress tensor is:
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Where M is the fourth-order overall damage effect tensor reflecting all kind of damage such as matrix cracking, fiber breakage, and interfacial damage between matrix and fiber. It can be represented by 6(6 matrix with the principal damage values D11, D22 and D33 as follows [16]:
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(14)

For a thin plate subjected to a state of plane stress, it is assumed that the plate lies in the 1-2 plane. In this case, M reduces to the following expression [17]:


[image: image36.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

D

-

+

-

D

D

D

D

-

D

D

-

=

2

)

1

(

)

1

(

2

2

1

0

0

1

]

[

22

11

12

12

12

11

12

22

D

D

D

D

D

D

D

D

M





(15)

Here,
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, here, three scalar damage variables are defined: D11 in the longitudial direction (associated with cracks perpendicular to the fiber direction), D22 in the transverse direction, and D12 in shear (associate with cracks parallel to the fiber direction, and fiber/matrix debonding). 
3.2. Damage surface and Damage evolution.
Without loss of generality, we will assume the following homogeneous function of one degree for the surface of dissipation potential (damage surface):
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in which J is a forth rank tensor which may depend on the state of damage in general [18,19], here it is given as following tensor: 
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The evolution law of anisotropic damage is characterized below [20]:

The damage evolution rule: 
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The damage hardening rule: 
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where 
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 is a multiplier to be determined by the consistency condition on the damage surface. Because the damage may further develop, the conjugate forces should remain on the surface, 
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here, 
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Substituting Eqs. (19-21) into Eq. (18), we can get the following damage evolution equations:
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where 
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 is a constant defined in Eq. (22).

3.3. Anisotropic Damage Criterion.
The damage equivalent strain,(ij, is defined as square root of the damage energy release rate [21]:
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Supposing the damage evolution at time t can be expressed as 
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here, 
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where the threshold value for damage initiation, 
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, represents the extreme value of the equivalent strain prior to the initiation of damage, it is also a damage material parameter. The evolution of damage equivalent strain can be also expressed by the Kuhn-Tucker relations:
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Together the definition of damage evolution with the energy dissipation inequality, yield
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Combining this inequality with Kuhn-Tucker relations, the damage evolution conditions become

If 
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If 
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4. THE FINITE ELEMENT FORMULATION FOR MACRO-LEVEL ANALYSIS
The Eight-node iso-parametric elements are used in the computation. The mechanical behavior with damage evolution shows very complex and high non-linear characteristics. To solve such non-linear behavior, an incremental solution process should be adopted.

The two-dimensional damage constitutive equation for the principal material coordinate system has been introduced in Eq.(10). The general equilibrium expression can be obtained:
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where {dU} is the unknown incremental displacement vector of the nodal points, {dR} is the corresponding incremental nodal forces, [K] is the stiffness matrix of the damaged model relative to the global coordinates: 
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where, [T] is the transformation matrix.

The above stiffness tensor is transformed to the loading coordinate system and is expressed as [D]k in matrix form. A symmetric stacking of plies is considered here such that t is the thickness of the laminate consisting of n plies and tk is the thickness of the kth lamina. The average stress increment is expressed as follows
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Making use of Eq. (35), the gross damage elastic stiffness for the laminated composite as follows in matrix form:
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Making use of the assumption of constant strain through the laminate thickness, the stresses in each lamina are calculated as follows:
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For each incremental load or displacement, the finite element analysis computes strains at the Gauss quadrature points. The strains are the composite level macro-strains. 

5. THE NUMERICAL RESULTS AND DISCUSSION
In the numerical calculation, the rectangular plate of the composites is the same with the test specimen in [1] The micro-level unit-cell is discretized with 256 elements totaling 801 degrees shown in Fig.2(b). The macro-structure is composed of 200 elements totaling 661 nodes in Fig.2 (a). The material properties are shown in Table.1.
(a) Macroscopic meshes.
(b) Microscopic meches.

Fig.2. The macroscopic and microscopic finite element meshes.

Table 1.

The characteristics of matrix and fibers in the SiC/CAS composites.

Properties
CAS matrix
SiC Fibers

Elastic modulus (GPa)
98
193.2,      195.14*

Tensile strength (MPa)
124
2760

Volume fraction
65%
35%

Poisson’s ratio
0.255,    0.3*
0.31       0.35*

Fracture toughness (MPam1/2)
1350
1300

* From [24], the others are from [1].

For the unidirectional composite, the computed elastic properties from different methods are reported in Table 2. The predicted values from the present analytical model are compared favorably with those obtained by experimental method and the rule of mixtures. The three-dimensional homogenization method gave the most accurate predictions for elastic properties, and the homogenization method with hexagonal array predicted the shear modulus satisfactorily.
Table 2.

Effective materials properties estimated from different methods.

Properties

Methods
Young’s modulus

(Gpa)
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Experimental
120       120       135
0.29
49

Mixture method
121.4   121.4   124.6
0.23


Average method
150       150       154
0.221     0.21     0.21
53.2    54.1    54.1

Homogenization me- thod (3-dimensional)
120       120       131
0.255   0.233   0.233
44.9    38.3    38.3

Homogenization me- thod (Hexagonal)
122.2     122.2
0.298
48.9

124 Homogenization me- thod  (Square)
125    124      

125
0.334

      0.331  0.331
40.2

36.9   36.9

The convergence in Fig.3a and 3b show that the homogenization method yields a fairly accurate estimation for the effective material properties of composites. 
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Fig.3a. The relationship between load parameter and elastic constants.
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Fig.3b. The relationship between mesh numbers and elastic constants.

In Fig.4 the macroscopic elastic properties are plotted vs. the fiber volume fraction, 
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Fig.4. The relationships between the 
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The data plotted in Fig.4 include the numerical results given by the present model, the theoretical prediction by the rule of mixture and average method in [22]. The “rule of mixture” model has a low-estimation, and the average method has an over-estimation to the elastic properties of composites. The homogenization method gives a moderate result. Homogenization method is a rigorous approach to determine the effective material properties of composites with linear and non-linear mechanical behavior. 

Fig.5 shows the tensile stress-strain curves for /08/, /03/90/03/, /03/902/03/ and /03/903/03/ cross-ply laminates under tensile loading.
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Fig.5. The stress-strain curves for unidirectional and cross-ply laminates.

Among of these stress-strain curves, the unidirectional laminates and /03/902/03/ cross-ply laminates are in good agreement with the experimental curves in literature [1], but there are greater difference for /03/90/03/ and /03/903/03/ cross-ply laminates. Fig.6 is the predictions of Young’s modulus-strains for /03/90/03/ and /03/903/03/ cross-ply laminates.
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Fig.6.
Young’s modulus reduction as a function of the composite strain for/03/90/03/ and /03/903/03/ laminate. 
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[image: image90.wmf]o

 Experimental in [18] for /03/90/03/.

Comparing with the experimental results in [23] and theoretical predictions obtained by using the modified shear-lag theory [24], the stiffness reductions for numerical results are much more rapidly than other two kinds of results, and these can be used to explain why the stress decrease more rapidly for numerical calculation. The transverse cracks and matrix micro-cracks are considered in the theoretical predictions for the cross-ply laminate. Then for the numerical results, more types of damage mechanisms are included, such as void growth and coalescence in the matrix, fiber fracture, fiber/matrix debonding, etc. In addition, except the delamination growth occurs at 0/90 interfaces, the matrix cracking concentrates mainly in the 90o layer. Obviously, with the increase of thickness of 90o ply, the capacity of carrying loading will decrease, just like the stress-strain tendency of /03/902/03/ laminates. For the above reasons, we consider the numerical results for /03/90/03/ and /03/903/03/ cross-ply laminates are also acceptable. 

The two other types of laminate are considered in this paper: (0/90)s and(45/-45)s, each consisting of four plies. The stress-strain curves are shown in Fig.7, which show the influence of stacking sequence on the mechanical behavior in CFCC with anisotropic damage. Damage evolutions with respect to the strains for (0/90)s layup and (45/-45)s layup are shown in Fig.8. From Fig.8 we can observed that damage in the 90o fiber orientation is experienced much earlier than the 0o fiber orientation as expected for (0/90)s laminate, damage D12 which is absent in the (0/90)s layup is experienced in the (45/-45)s layup. This implies that damage D12 is exclusively related to the shear stress, and (0/90)s laminate has larger tensile strength than (45/-45)s laminate. The results show that the anisotropic behavior of damage is significant for CFCC with different types of laminate.
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Fig.7. Stress-strain curves for (0/90)s and (45/-45)s layups.

[image: image92.wmf]0

100

200

300

400

0

0.2

0.4

0.6

0.8

1

Stress(MPa)

Damage

90

0

D

22

0

0

D

11

45

0

D

12

45

0

D

22

45

0

D

11


Fig.8. Damage-stress curves for(0/90)s and (45/-45)s layups.

6. CONCLUSIONS

The homogenized constitutive model with overall anisotropic damage of the CFCC at room temperature was established. The main conclusions were:

(1)
The elastic material properties can be calculated by using the homogenization method for microscopic unit cell, and the results are in good agreement with the experimental results and other theories (the rule of mixture and the average method). The homogenization method is a rigorous approach to determine the effective elastic properties. 

(2) The anisotropic damage evolution results of CFCC show that the present formulation can describe the elastic-brittle damage without the specific independent equations. The finite element analysis using eight-node quadrilateral elements gives satisfactory predictions for the macroscopic stress-strain behavior of the CFCC unidirectional composites with overall ainsotropic damage. 

(3) The anisotropic damage analyses for different types of laminate reveal that the anisotropic behavior of damage is significant for CFCC, and further improvement on the accuracy of the damage prediction will be necessary from the point of view of local phase analysis. 
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