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ABSTRACT

The DCB test for mode-I loading was utilized to obtain the interlaminar fracture toughness of two type of CFRP composites. Elastic theoretical and finite element analyses were conducted to model the R-curve behavior of laminated composites. In the theory, the bridging fibers were represented by elastic beams, while the stress field behind the crack-tip was calculated from the elastic foundation model. In the FE analysis the bridging fibers were modeled with TRUSS2D beam elements. The fracture toughness was evaluated numerically by the path independent J-integral. The analysis was done by the finite element code COSMOS/M 2.0. Experimental results were used from previous publications and comparison was made with the current computations. Comparison in the results shows, in the theory it is necessary to consider the fiber-bridging and the elastic foundation to obtain reasonably good, fully analytical values for the fracture energy. On the other hand, the FE models overpredict the mode-I toughness in the final stage of crack propagation. Simulating the bridging fibers these overpredictions can be eliminated.

1. INTRODUCTION


In the recent years the interlaminar fracture toughness of composite materials is very intensively investigated by designers. The theoretical foundation, as well as experimental and finite element analysis is very important to know thoroughly the delamination process in composite materials. The interlaminar fracture toughness can be affected by many parameters (e.g.: material properties, loading speed, temperature, data reduction scheme). Several authors reported the R-curve behavior of laminated composites measured experimentally under mode-I loading conditions [1,2]. The R-curve behavior is mainly attributed to the fiber-bridging process, which enhances the resistance to delamination. The fiber-bridging occurs only under mode-I (opening mode) and mixed-mode I+II (opening and in-plane shearing mode) loading conditions. The double cantilever beam (DCB) specimen is the most commonly used to investigate the mode-I fracture properties of laminated composites. In literature the elastic beam theory is used as data reduction scheme for the fracture toughness test of composite materials. The results of the linear elastic beam theory often disagree with the experimentally measured fracture toughness. In fact the beam theory, denoted as global method should be completed with other factors, which account the effects of block stiffness, frictional forces and other testing conditions. The corrected beam theory (CBT) counts for the large displacement block stiffening and crack-tip rotation and deflection [2,3]. Plotting the crack length against the third root of the compliance results the (-correction of the crack length. The classical beam theory assumes that the arms of the DCB specimen are rigidly built-in in the uncracked region of the specimen. Ozdil and Carlsson presented a study about unidirectional and angle-ply E-glass/polyester DCB specimens using the Winkler foundation model, a fourth order differential equation for the deflection function of the DCB specimen [1]. The study completed the results of the elementary beam theory with a power factor, which depends on the first, second and the third root of the crack length and the moduli ratio (Ex/Ez). Using the former factors the experimental results can be followed with more accuracy. The finite element method is widely acknowledged by designers, denoted as local method. The virtual clack closure technique (VCCT), or commonly known as the modified clack closure integral (MCCI) uses the nodal displacements and forces in the vicinity of the crack-tip to calculate the strain energy release rate. This method is suitable for four- and eight-noded plane stress and plane strain models as well as for three-dimensional ones [4]. The J-integral is also a local method, which depends on the opening angle and the stress field around the crack-tip. The J-integral is applicable only for isotropic plane stress and plane strain models [5]. Both the beam theory and the finite element analysis require the experimentally measured force/crack opening displacement (P-() curves as input data. The experimental studies often report fiber-bridging and crossing fibers along the delamination front [6,7]. These fibers increase the resistance to delamination. Hence the force/displacement curves include the bridging and breakage of fibers through the delamination process.


This study presents theoretical and finite element analyses of the DCB specimen based on the experimental research work of Morais et al. and Hashemi et al. [2,6]. Unidirectional carbon/epoxy and carbon/polyether-ether ketone (PEEK) composite properties were utilized. Experimentally measured force/displacement curves were used as input in the analysis. The main goal of this study is to identify discrepancies in the experimental and theoretical values of the fracture toughness based on the fiber-bridging phenomenon and the elastic foundation of the uncracked region.

2. DETERMINATION OF THE FRACTURE TOUGHNESS

2.1. Beam theory.
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The fracture toughness can be determined using the formulas of the Euler-Bernoulli beam theory as shown in Fig.1.

Fig.1. Compliance and interlaminar fracture toughness for the mode-I DCB specimen.

In this theory the composite specimens are considered as homogeneous elastic beams [8]. The general Irwin-Kies expression calculates the fracture toughness using the compliance of the specimen [9]:
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(1)

where P is load, C is the compliance, W is specimen width and a is the actual crack length.

2.2. J-integral.

The interlaminar fracture toughness (GI) was calculated by the J-integral in this study. The J-integral is equivalent with the fracture toughness undergoing small strains under quasi-static conditions. The expression for the J-integral [5,9]:
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where g is arbitrary contour around the crack tip, W is the total strain energy density, Ti are the components of traction vector, ui are the components of displacement vector and ds is the arc length along the contour g. The J-integral is applicable only for isotropic, plane strain and plane stress models.

3. THEORETICAL ANALYSIS OF THE FIBER-BRIDGING


In this section we establish a new approximation for the fiber-bridging phenomenon based on elastic beam theory. The beam analysis was conducted using the following assumptions:

(the crack length has the same size in both sides of the specimen;

(the upper and lower arms of the specimen behave as rigidly built-in in the uncracked region of the beam with zero slope and displacement at the crack-tip;

(the fiber-bridging occurs only in the final stage of the delamination process;

(the displacement and force components in the x direction were neglected in the theory;

(since the displacement function depends on the Pr1 force (Fig.2a.), the crack opening displacement (COD) in the loading point was calculated from the beam analysis, the force was read from the experimental force/displacement curves;

(stable crack growth was assumed in every crack length.

Considering the DCB specimen in Fig.2a, which has two region due to the bridging fiber and expressing the bending moment functions for the upper and lower arms of the specimen:
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The strain energy from the bending moment functions can be calculated for the upper and lower arms as follows:
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Fig.2. Elastic analysis of the fiber-bridging in the DCB specimen.

First we calculate the displacement in the bridging fibers by expressing the displacements at l1 and l2:
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(7)

It was assumed that the bridging fiber is connected to the arms with pins. According to this the elongation in the bridging fiber:
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where l01=l2-l1 is the initial length of the debonded fiber. The tensile force in the bridging fiber:
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(9)

where s is the stiffness, A1 is the cross-section of the bridging fiber. The next step is to express the offaxis angle between the bridging fiber and the x-axis:
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Hence the force Pr1 which loads the DCB specimen, according to Fig.2a:
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Substituting Eq.(8), Eq.(9) and Eq.(10) into the expression of Pr1 and substituting the displacements in Eq.(7) into the formula of (1 in Eq.(10) yields a transcendent equation, which can be solved for Pr1 by a numerical procedure. In fact in the case of fiber-bridging several debonded fiber bundles can be observed as reported and photographed by several authors [7,10,11]. The location and the length of the bridging fiber bundles should be determined from experiments. According to this in Fig.2b it was assumed that the number of bridging fiber bundles is ‘i’. The displacement function depends on the location of the connection between the bridging fiber and the DCB specimen. Similarly, using the beam stiffnesses (si, si+1, si+2) and expressing the tensile forces and the offaxis angles an equation system is resulted, which should be solved numerically for Pri, Pri+1, Pri+2. In this study the former numerical procedure was conducted by using the code Maple V Release 5 [12]. After the equation system has been solved for the forces the compliance of the specimen can be expressed using Castigliano’s principle:
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where U=Uu+Ul the strain energy for the upper and lower arms of the DCB specimen. The two forms of the fracture energy can be obtained by using Eq.(1):
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(13)

the another form containing the COD:
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In Eq.(13) it can be noticed that the first term is the well-known formula from elastic beam theory, the second term arises only if fiber-bridging occurs. Eq.(13) is valid only for one bridging fiber bundle. In Eq.(14), if Pr1 vanishes, we get back the formula of the simple beam theory. The former procedure was used for several cases including symmetrical and asymmetrical arrangements of the fiber-bridging form. The results for these cases are summarized in Fig.3. As the summary of the results, the following generalized closed-formed expressions can be derived for the compliance:
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and for the fracture toughness:
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where (=2, (=1 for symmetric arrangement and (=1, (=2 for asymmetric arrangements and n is the number of distinct forces due to fiber-bridging, acting on the arms of the DCB specimen. It must be pointed out, that for determining the forces Pri a numerical solution is required due to the transcendent equation system. In this study the location of bridging fibers were chosen arbitrarily, but publications, which has reported fiber-bridging were used to compare the analytical and experimental results.
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