ИССЛЕДОВАНИЕ СПЕКТРА ЧАСТОТ ТРЕХСЛОЙНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С УПРУГИМ НАПОЛНИТЕЛЕМ¹

Старовойтов Э.И., Леоненко Д.В.

Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь

РЕЗЮМЕ

Приведена постановка и решение задачи о собственных колебаниях трехслойной цилиндрической оболочки заполненной упругой средой (наполнителем). Для изотропных несущих слоев приняты гипотезы Кирхгофа-Лява. В толстом заполнителе учитывается работа поперечного сдвига и обжатие по толщине. Изменение перемещений принято линейным по поперечной координате. На границах контакта используются условия непрерывности перемещений. Учтены радиальные, продольные и окружные силы инерции. Получен ряд аналитических решений и проведен численный анализ зависимости частот собственных колебаний от жесткости наполнителя.

Ключевые слова: собственные колебания; трехслойная цилиндрическая оболочка; упругий наполнитель; частоты

INVESTIGATION OF THE FREQUENCY SPECTRUM OF A THREE-LAYERED CYLINDRICAL SHELL WITH AN ELASTIC FILLER

Starovoitov E.I., Leonenko D.V.

Belarusian state University of transport, Gomel, Republic of Belarus

SUMMARY

The paper considers natural oscillations of the three-layered cylindrical shells filled by an elastic medium. The Kirchhoff-Love's hypotheses are accepted for the thin isotropic bearing layers. The work of the transverse shear and thickness reduction in the thick filler are taken into account. Variations in displacements in the transverse coordinate are accepted to be linear The conditions of continuous displacements are used on the contact boundary. The reaction of the inertia-free elastic filler is described in terms of the Winkler's model. A number of analytical solutions have been obtained and numerical analysis according to the frequencies of the natural oscillations.

Key words: natural oscillations; three-layered cylindrical shell; elastic filler; frequencies

ВВЕДЕНИЕ

Трехслойные элементы конструкций нашли широкое применение в современных отраслях промышленности. Это обуславливает необходимость разработки методов их расчета. Различные модели упругих трехслойных

-

¹ Работа выполнена при поддержке Российского научного фонда (проект 14-49-00091).

конструкций предложены в [1]. В монографии [2] рассмотрены различные модели упругой среды, с которой связаны элементы конструкций при деформировании, в том числе исследовано деформирование однородных конструкций на упругом основании. Книги [2-4] посвящены исследованию статического и динамического деформирования трехслойных пластин и оболочек, не связанных с упругими средами. Задачи квазистатического деформирования трехслойных стержней и пластин на упругом основании разобраны в работах [5-9]. В статьях [10,11] рассмотрены гармонические колебания физически круглых нелинейных трехслойных пластин. Нестационарные колебания упругой среды, ограниченной двумя эксцентричными сферическими поверхностями и распространение нестационарных волн в упругом слое рассмотрены в [11,12].

Одной из самых важных с практической точки зрения задач динамики является исследование спектра частот собственных колебаний. Ее решение позволяет определить собственные частоты и формы, знание которых необходимо для решения задач о колебаниях трехслойных конструкций при различных видах внешних воздействий. Здесь рассмотрено влияние упругого наполнителем на частоты собственные колебания трехслойной круговой цилиндрической оболочки.

1. ПОСТАНОВКА ЗАДАЧИ

В тонких изотропных несущих слоях оболочки приняты гипотезы Кирхгофа-Лява. В толстом заполнителе учитывается работа поперечного сдвига и обжатие по толщине. Изменение перемещений принято линейным по поперечной координате. На границах контакта слоев используются условия непрерывности перемещений. Деформации малые.

Через h_k обозначена толщина k-го слоя, h_3 =2c (рис.1). За независимые переменные принимаются $u_{\alpha}{}^k$, w^k – тангенциальные перемещения и прогибы точек срединных поверхностей несущих слоев (k=1,2) в направлении осей x_{α} , z правой системы координат, отнесенной к линиям главных кривизн срединной поверхности заполнителя и к внешней нормали, соответственно.

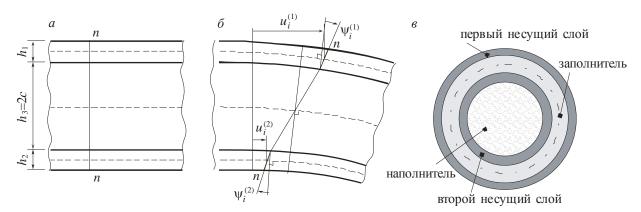


Рис.1. Расчетная схема оболочки.

К внешней поверхности оболочки приложена распределенная нагрузка q_l^1 , к внутренней — реакция упругой безынерционной среды Винклера (рис.1,e) $q_{3r}^2 = -\kappa_0 w^2$, κ_0 — коэффициент жесткости упругого наполнителя.

В результате выражения для перемещений в несущих слоях ($c \le z \le c + h_1$, $-c - h_2 \le z \le -c$) будут

$$u_{\alpha}^{kz} = u_{\alpha}^{k} + (z \mp a_{k}) \psi_{\alpha}^{k}; \quad a_{k} = c + 0.5h_{k},$$

$$\psi_{1}^{k} = -w^{k},_{1}, \quad \psi_{2}^{k} = (R \pm a_{k})^{-1} (u_{2}^{k} - w^{k},_{2}). \tag{1}$$

Здесь и далее греческие индексы принимают значения 1, 2, латинские -1, 2, 3 (если другое специально не указано); нижний знак k в формуле соответствует индексу 2 (номеру слоя); ψ_{α}^{k} — угол поворота деформированной нормали в k-м несущем слое; R — радиус оболочки. Частное дифференцирование по координате обозначается соответствующим нижним координатным индексом, следующим после запятой.

Из условия непрерывности перемещений на границах контакта слоев для заполнителя ($-c \le z \le c$, верхний индекс «3») следует

$$u_{1}^{3z} = 0.5 \sum_{k=1}^{2} (1 \pm z/c) (u_{1}^{k} \pm 0.5h_{k} w^{k}, 1),$$

$$u_{2}^{3z} = \sum_{k=1}^{2} (1 \pm z/c) ((0.5 \mp D_{k2}) u_{2}^{k} \pm D_{k2} w^{k}, 2), \quad w^{3z} = 0.5 \sum_{k=1}^{2} (1 \pm z/c) w^{k}, \quad (2)$$

$$D_{k1} = h_{k}/4, \quad a_{k} = c + 0.5h_{k}, \quad D_{k2} = 0.25h_{k} (1 \pm a_{k}/R)^{-1} R^{-1}.$$

Уравнения движения трехслойной оболочки и силовые граничные условия следуют из вариационного принципа Лагранжа

$$\delta W + \delta A_a = \delta A_I \,, \tag{3}$$

где δW — вариация работы внутренних сил упругости, δA_I — вариация работы сил инерции, δA_q — вариация работы внешних сил и упругого основания

$$\delta W = 2\pi \int_{0}^{l_{1}} \left[\sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha\beta}^{k} \delta \varepsilon_{\alpha\beta}^{kz} (R+z) dz + \int_{h_{3}} \left(2\sigma_{\alpha3}^{3} \delta \varepsilon_{\alpha3}^{3z} + \sigma_{33}^{3} \delta \varepsilon_{33}^{3z} \right) (R+z) dz \right] dx_{1},$$

$$\delta A_{I} = 2\pi \sum_{k=1}^{3} \int_{0}^{l_{1}} \left[\rho_{k} \left(\ddot{w}^{kz} \delta w^{kz} + \ddot{u}_{\alpha}^{kz} \delta u_{\alpha}^{kz} \right) \right] (R+z) dz dx_{1},$$

$$\delta A_{q1} = 2\pi \int_{0}^{l_{1}} \left[\left(q_{\alpha}^{2} \left(\delta u_{\alpha}^{2} - \frac{h_{2}}{2} \delta \psi_{\alpha}^{2} \right) + q_{3}^{2} \delta w^{2} \right) (R-c-h_{2}) + q_{3r}^{1} \delta w^{1} (R+c+h_{1}) \right) dx_{1},$$

$$(4)$$

где напряжения σ_{ij}^k и деформации ε_{ij}^k в слоях связаны законом Гука, ρ_k – плотность материала k-го слоя, l_1 – линейный размер оболочки в направлении координатной оси x_1 , суммирование производится по повторяющимся греческим индексам, точки над перемещениями – производные по времени.

Подставив в вариационное уравнение (3) выражения для вариаций работ (4) и, проведя с помощью (1), (2) стандартные преобразования, получим в общем случае шесть уравнений движения цилиндрической трехслойной оболочки с упругим наполнителем

$$\begin{split} &\sum_{k=1}^{2} \left[\left(a_{m\alpha_{1}}^{k} \frac{\partial^{2}}{\partial x_{\alpha}^{2}} + a_{m\alpha_{2}}^{k} \frac{\partial^{2}}{\partial x_{\beta}^{2}} + a_{m\alpha_{3}}^{k} \right) u_{\alpha}^{k} + a_{m\alpha_{4}}^{k} \frac{\partial^{2} u_{\beta}^{k}}{\partial x_{\alpha} \partial x_{\beta}} + \\ &+ \left(a_{m\alpha_{5}}^{k} \frac{\partial}{\partial x_{\alpha}} + a_{m\alpha_{6}}^{k} \frac{\partial^{3}}{\partial x_{\alpha}^{3}} + a_{m\alpha_{7}}^{k} \frac{\partial^{3}}{\partial x_{\alpha} \partial x_{\beta}^{2}} \right) w^{k} \right] - b_{\alpha}^{m} \ddot{u}_{\alpha}^{m} = \left(\mp 0.5 h_{m} c_{2}^{m} \delta_{\alpha_{2}} - R \right) m_{m} q_{\alpha}^{m} \delta_{m_{2}}, \end{split}$$

$$\sum_{\alpha,k=1}^{2} \left[\left(a_{m31}^{\alpha k} \frac{\partial^{4}}{\partial x_{\alpha}^{4}} + a_{m32}^{k} \frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}} + a_{m33}^{\alpha k} \frac{\partial^{2}}{\partial x_{\alpha}^{2}} + a_{m34}^{k} - \kappa_{0} R m_{m} \delta_{mk} \delta_{2m} \right) w^{k} + \left(a_{m35}^{\alpha k} \frac{\partial^{3}}{\partial x_{\alpha}^{3}} + a_{m36}^{\alpha k} \frac{\partial}{\partial x_{\alpha}} + a_{m37}^{\alpha k} \frac{\partial^{3}}{\partial x_{\alpha} \partial x_{\beta}^{2}} \right) u_{\alpha}^{k} \right] - b_{3}^{m} \ddot{w}^{m} = \\
= -R m_{m} \delta_{1m} \left[q_{3}^{m} \pm 0.5 h_{m} \left(q_{1}^{m}, + R^{-1} c_{2}^{m} q_{2}^{m}, 2 \right) \right] (m, \alpha, \beta = 1, 2; \alpha \neq \beta), \tag{5}$$

где δ_{mk} – символы Кронекера, a_{mnp}^k – 49 коэффициентов, выраженных через геометрические характеристики слоев, параметры упругости материалов слоев и жесткость наполнителя κ_0 , например

$$\begin{split} a_{k11}^{k} &= K_{k}^{+} h_{k} \left(1 \pm a_{k} \right) + K_{3}^{+} c \left(2 \pm c \right) / 3 , \ a_{\alpha 11}^{k} &= K_{3}^{+} c / 3 , \\ a_{\alpha 37}^{2k} &= \mp K_{3} B_{k2} h_{\alpha} c / 3 \mp G_{3} B_{k2} c \left(h_{\alpha} / 3 + 4 D_{\alpha 2} \right) / 3 , \\ m_{m} &= 1 \pm \left(c + h_{m} \right) R^{-1} , \ b_{1}^{m} &= 2 R \left[\rho_{m} I_{1}^{m} + 0,25 \rho_{3} I_{2}^{\pm} \right] , \ b_{3}^{m} &= b_{1}^{m} , \\ b_{2}^{m} &= 2 R \left[\rho_{m} \left(I_{1}^{m} + 2 R^{-1} \left(1 \pm a_{1} / R \right)^{-1} I_{3}^{m} + R^{-2} \left(1 \pm a_{1} / R \right)^{-2} I_{5}^{m} \right) + \rho_{3} \left(B_{m2} \right)^{2} I_{2}^{\pm} \right] , \\ I_{1}^{k} &= \int_{h_{k}} \left(1 + \frac{z}{R} \right) dz \quad I_{2}^{\pm} &= \int_{h_{k}} \left(1 \pm z / c \right)^{2} \left(1 + \frac{z}{R} \right) dz \quad I_{3}^{k} &= \int_{h_{k}} \left(z \mp a_{k} \right) \left(1 + \frac{z}{R} \right) dz . \end{split}$$

Уравнения (5) учитывают силы инерции в оболочке, возникающие вдоль трех координатных осей, т.е. соответствуют объемно-инерционной модели.

Силовые граничные условия формулируются из требования выполнения в каждой точке координатной линии равенства заданных обобщенных усилий и моментов внутренним силовым факторам, входящим в выражения контурного интеграла вдоль той же линии. Иначе говоря, на каждом торце формулируется по восемь граничных условий. Кинематические условия свободного опирания торцами на жесткие неподвижные опоры будут

$$w^{k} = u_{1}^{k}, = w^{k},_{11} = 0 \quad (k = 1, 2).$$
 (6)

Начально-краевая задача определения перемещений замыкается добавлением к уравнениям движения (5) профилей начальных перемещений и скоростей срединных поверхностей несущих слоев

$$u_{\alpha}^{k}(x_{\beta},0) = u_{\alpha 0}^{k}(x_{\beta}), \quad \dot{u}_{\alpha}^{k}(x_{\beta},0) = \dot{u}_{\alpha 0}^{k}(x_{\beta}),$$

$$w^{k}(x_{\beta},0) = w_{0}^{k}(x_{\beta}), \quad \dot{w}^{k}(x_{\beta},0) = \dot{w}_{0}^{k}(x_{\beta}) \quad (\alpha,\beta,k=1,2).$$
(7)

2. МЕТОД И РЕШЕНИЕ ЗАДАЧИ

Граничные условия (6) будут тождественно удовлетворяться, если решение системы (5) принять в виде разложения в двойные тригонометрические ряды по координатным функциям

$$u_{1}^{k} = \sum_{m,n=0}^{\infty} \cos \frac{\pi mx}{L} \cos (n\varphi) T_{1mn}^{k}(t) , \quad u_{2}^{k} = \sum_{m,n=0}^{\infty} \sin \frac{\pi mx}{L} \sin (n\varphi) T_{2mn}^{k}(t) ,$$

$$w^{k} = \sum_{m,n=0}^{\infty} \sin \frac{\pi mx}{L} \cos (n\varphi) T_{3mn}^{k}(t) . \tag{8}$$

где $T_{lmn}^k(t)$ – искомые функции времени.

Предполагая, что все точки конструкции совершают колебания с одинаковой частотой, уравнения для определения функций времени $T_{lmn}^k(t)$ получим, подставив выражения (8) в систему (5)

$$\mathbf{PT} - \mathbf{BT} = 0. \tag{9}$$

Решение уравнения (9) можно принять в виде

$$T_{lmn}^{k}(t) = A_{lmn}^{k} \sin(\omega_{mn}t + \alpha_{mn}), \qquad (10)$$

где A_{lmn}^k , ω_{mn} – амплитуды и частоты колебаний, α_{mn} – начальные фазы, которые определяются из начальных условий (7).

Подставив выражения для функции (10) в систему уравнений (9), придем к обобщенной задаче на собственные значения

$$\mathbf{PA} = -\omega^2 \mathbf{BA} . \tag{11}$$

где ${\bf P}$ — квадратная матрица шестого порядка; ${\bf B}$ — диагональная матрица; ${\bf A}$ — вектор, сформированный амплитудами A^k_{lmn} .

Обозначив $\lambda^{\circ} = ^{\circ} - \omega^2$ и обратив матрицу **B**, т. к. она является не вырожденной, перейдем от (11) к стандартной задаче на собственные значения

$$\mathbf{R}\mathbf{A} = \lambda \mathbf{A} , \quad \mathbf{R} = \mathbf{B}^{-1}\mathbf{P} . \tag{12}$$

Переход от (11) к (12) и вычисление собственных значений λ легко реализуются с помощью стандартных программ.

По найденным значениям ω_i^2 (i=1,...,6) вычисляется собственный вектор **A**. При этом, предполагая, что собственные значения не являются кратными, в матрице **R** – λ **E** среди всех ее миноров пятого порядка выбирается тот, который имеет наибольшее по модулю значение, то есть вычисляется номер строки, подлежащей исключению в (12), и номер столбца, определяющий правую часть соответствующей системы уравнений пятого порядка. В итоге находится тот компонент вектора **A**, относительно которого будет произведена нормировка и получены коэффициенты собственных форм колебаний.

3. ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ

Численные результаты получены ДЛЯ круговой трехслойной цилиндрической оболочки, свободно опертой торцами на жесткие неподвижные опоры. Ее слои имеют относительные толщины $h_1 = h_2 = 0.02$, c = 0.025; κ_0 (Па/м) – наполнителя. В качестве материала несущих слоев жесткость упругого заполнитель – фторопласт. принимался сплав Д16Т, Механические характеристики этих материалов содержатся в [3]. Частоты колебаний приводятся ${\bf B} {\bf c}^{-1}$.

В табл.1 приведены собственные частоты ω_{mnp} для короткой (L=2R) и длинной оболочек, свободных от упругого наполнителя. Они следуют из (8)-(12) при κ_0 = 0 .

В дальнейшем, для принятых длинных оболочек упругие наполнители с $\kappa_0 < 10^9$ Па/м будем считать мало жесткими; при $10^9 < \kappa_0 < 10^{11}$ Па/м – средне жесткими; в случае $\kappa_0 > 10^{11}$ Па/м – высокой жесткости. Для коротких оболочек граничные значения жесткостей меньше на порядок.

Далее рисунки иллюстрируют изменение первых трех частот для оболочек длиной L=2 (*a*) и L=10 (*б*) в зависимости от жесткости наполнителя κ_0 .

Таблица 1. Частоты собственных объемных колебаний цилиндрической трехслойной оболочки.

p	$m \setminus n$	L=2R			L=10R		
		0	1	2	0	1	2
1	0	0	0	187	0	0	187
2		0	1728	3454	0	1728	3454
3		3602	4800	5660	3602	4800	5660
4		4478	5023	7847	4478	5023	7847
5		4485	5815	8674	4485	5815	8674
6		32958	32961	32973	32958	32961	32973
1	1	2715	1780	1068	543	186	200
2		2822	3645	4680	938	1935	3527
3		5239	5509	6269	3655	4826	5685
4		6068	7168	9511	4518	5110	7917
5		7234	8103	10326	4621	5921	8745
6		32964	32968	32982	32958	32962	32974
1	2	3021	2701	2130	1086	581	312
2		5429	5804	6635	1774	2372	3725
3		7032	7238	7828	3859	4912	5761
4		11433	11995	13490	4614	5365	8127
5		12203	12735	14240	5024	6230	8954
6		32993	32999	33022	32959	32962	32975

На рис.2 показано изменение первых трех частот ω_{01p} ($1 - \omega_{011}$, $2 - \omega_{012}$, $3 - \omega_{013}$) рассматриваемой оболочки, заполненной упругой средой.

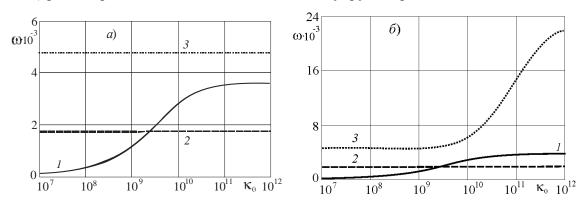


Рис.2. Зависимость частот собственных колебаний ω_{01p} от κ_0 .

При уменьшении жесткости наполнителя частота ω_{011} уменьшается до нуля (см. табл.1). Наличие наполнителя практически не влияет на частоты ω_{012} для обеих оболочек. В короткой оболочке (L=2) частота ω_{013} не зависит от жесткости наполнителя. В длинной оболочке (L=10) при $\kappa_0 > 10^9$ Па/м частота ω_{013} резко возрастает.

Рис.3 иллюстрирует изменение первых трех частот ω_{10p} $(1-\omega_{101}, 2-\omega_{102}, 3-\omega_{103})$ рассматриваемой оболочки в зависимости при увеличении коэффициента жесткости наполнителя. Наличие внутренней среды практически не влияет на частоту ω_{101} . При малой жесткости наполнителя влияние на другие частоты

незначительно. В области средней жесткости частота ω_{102} в короткой оболочке увеличивается практически в 2 раза, в длинной — частота ω_{103} увеличивается в 5 раз. С увеличением длины оболочка становится менее жесткой, соответствующие частоты уменьшаются.

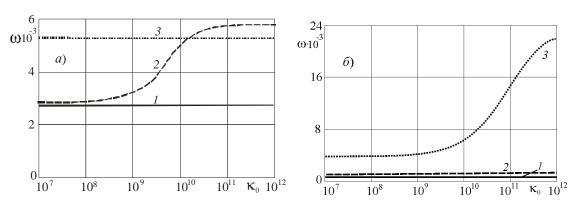


Рис.3. Зависимость частот собственных колебаний ω_{10p} от κ_0 .

На рис.4 приведены графики изменения первых трех частот ω_{11p} $(I-\omega_{111}, 2-\omega_{112}, 3-\omega_{113})$ оболочки, при изменении коэффициента жесткости κ_0 . Частоты ω_{111} , ω_{112} при средней жесткости наполнителя заметно возрастают, мало изменяясь в других интервалах. Наличие упругой среды слабо влияет на частоту ω_{113} . С увеличением длины оболочки частоты по-прежнему уменьшаются.

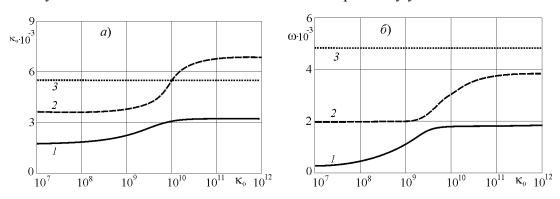


Рис.4. Зависимость частот собственных колебаний ω_{11p} от κ_0 .

ЗАКЛЮЧЕНИЕ

Наличие упругого безынерционного наполнителя существенно увеличивает частоты радиальных колебаний оболочки; частоты, характеризующие крутильные и продольные колебания, практически не зависят от ее присутствия. Этот эффект объясняется особенностями модели Винклера, при которой реакция среды направлена по радиусу оболочки.

ЛИТЕРАТУРА

1. *Болотин В.В., Новичков Ю.Н.* Механика многослойных конструкций. – М.: Машиностроение, 1980. – 375 с.

- 2. *Власов В.З., Леонтьев Н.Н.* Балки, плиты, оболочки на упругом основании. М.: Государственное издательство физико-математической литературы, 1960. 491 с.
- 3. *Горшков А.Г., Старовойтов Э.И., Яровая А.В.* Механика слоистых вязкоупругопластических элементов конструкций. М.: ФИЗМАТЛИТ, 2005. 576 с.
- 4. *Старовойтов Э.И., Яровая А.В., Леоненко Д.В.* Деформирование трехслойных элементов конструкций на упругом основании. М.: ФИЗМАТЛИТ, 2006. 380 с.
- 5. *Starovoitov E.I.*, *Nagiyev F.B.* Foundations of the theory of elasticity, plasticity and viscoelasticity. Toronto, New Jersey: Apple Academic Press, 2012. 346 p.
- 6. Плескачевский Ю.М., Старовойтов Э.И., Леоненко Д.В., Панин С.В. Термопластический изгиб круговых композитных пластин на основании Винклера // Механика композиционных материалов и конструкций. − 2011. − Т.17. –№2. − С.209-219.
- 7. Leonenko D.V., Starovoitov E.I. Deformation of a three-layer elastoplastic beam on an elastic foundation // Mechanics of Solids. 2011. Vol.46. N2. P.291-298.
- 8. Старовойтов Э.И., Доровская Е.П. Изгиб прямоугольной трехелойной пластины на упругом основании // Проблемы машиностроения и автоматизации. -2006. -№3. -C.45-50.
- 9. *Старовойтов Э.И.*, *Леоненко Д.В.*, *Сулейман М.* Термоупругий изгиб кольцевой трехслойной пластины на упругом основании // Экологический вестник научных центров Черноморского экономического сотрудничества. − 2006. №4. C.55-62.
- Starovoitov E.I., Leonenko D.V., Yarovaya A.V. Circular sandwich plates under local impulsive loads // International Applied Mechanics. – 2003. – Vol.39. – N8. – P.945-952.
- 11. *Gorshkov A.G.*, *Starovoitov É.I.*, *Yarovaya A.V.* Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell // International Applied Mechanics. 2001. Vol.37. N9. P.1196-1203.
- 12. *Горшков А.Г., Тарлаковский Д.В., Шукуров А.М.* Нестационарные колебания упругой среды, ограниченной двумя эксцентричными сферическими поверхностями // Прикладная математика и механика. − 1994. − Т.58. − №2. − С.85-92.
- 13. *Кузнецова Е.Л.*, *Тарлаковский Д.В.*, *Федотенков Г.В.* Распространение нестационарных волн в упругом слое // Изв. РАН. Механика твердого тела. 2011. №5. C.144-152.

Поступила в редакцию 7 января 2015 года.

Старовойтов Эдуард Иванович — д.ф.-м.н., проф., зав. кафедрой «Строительная механика», Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь; e-mail: edstar@mail.by

Леоненко Денис Владимирович — д.ф.-м.н., доц., профессор кафедры «Строительная механика», Белорусский государственный университет транспорта, г. Гомель, Республика Беларусь; e-mail: leoden@tut.by

Сведения об авторах: