

КОЭФФИЦИЕНТ ИНТЕНСИВНОСТИ НАПРЯЖЕНИЙ ДЛЯ ДВУСЛОЙНОЙ БАЛКИ С ДИФФУЗНЫМ СЛОЕМ ПРИ ТРЕХТОЧЕЧНОМ НАГРУЖЕНИИ^{*}

Хвостунков К.А.

ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», г. Москва, Россия ФГБУН Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова, г. Черноголовка, Россия

АННОТАЦИЯ

Проблема получения новых слоистых композиционных материалов на основе керамика/интерметаллид с заданной регулярной структурой и улучшенными физикомеханическими характеристиками решается на основе оптимизации пропорций толщин слоев в рамках технологии самораспространяющегося высокотемпературного синтеза – CBC-технологии. Рассматривается задача хрупкого разрушения двухслойной балки с разрезом в условиях трехточечного нагружения. Получена тарировочная функция для коэффициента интенсивности напряжений с учетом пропорции толщин и упругих свойств обоих слоев балки и промежуточного диффузного слоя.

Ключевые слова: прочность слоистого CBC композита; коэффициент интенсивности напряжений; двуслойный композит с диффузным слоем

STRESS INTENSITY COEFFICIENT FOR A TWO LAYER BEAM WITH A DIFFUSE LAYER UNDER THREE_POINT LOADING

Khvostuncov K.A.

Moscow state university, Moscow, Russia Merzhanov Institute of Structural Macrokinetics and Materials Science, Chernogolovka, Russia

ABSTRACT

new layered composite The problem of obtaining materials based on ceramics/intermetallide with a given regular structure and improved physical and mechanical characteristics is solved on the basis of optimization of layer thickness proportions within the technology of self-propagating high-temperature synthesis – SHS-technology. The problem of brittle fracture of a two-layer beam with a section under three-point loading is considered. A gauge function for the stress intensity factor is obtained taking into account the proportion of thicknesses and elastic properties of both layers of the beam and the intermediate diffuse layer.

^{*} Исследование выполнено за счет гранта Российского научного фонда №22-19-00040, <u>https://rscf.ru/project/22-19-00040/</u>, а также при поддержке Междисциплинарной научнообразовательной школы Московского государственного университета «Фундаментальные и прикладные исследования космоса». **Keywords:** strength of layered SHS composite; stress intensity coefficient; two-layer composite with diffuse layer

введение

На сегодняшний день слоистые композиционные материалы на основе TiB/TiAl(Nb,Mo)B вызывают большой интерес. Данное направление исследований является актуальным с точки зрения получения готовых компактных слоистых пластин керамика/интерметаллид с заданной регулярной структурой и физико-механическими свойствами [1-5]. Определение влияния пропорций толщин слоев и их упругих свойств на перераспределение напряжений и, как следствие, на предельные нагрузки представляется важной задачей. Теоретическое исследование влияния рассматриваемых параметров проведено в данной работе и получен результат, необходимый для корректной трактовки будущих экспериментальных данных по разрушению образца прямоугольного сечения с боковым надрезом при трехточечном нагружении. Рассматриваемый тип материалов отличает хрупкий характер разрушения, высокая твердость и жесткость материала в целом и адгезионного слоя в частности.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим двухслойную балку из упругих материалов с разделяющим их тонким диффузным слоем. Направим ось *x* горизонтально вдоль оси балки, а *y* ортогонально оси *x*, вверх по высоте. Ось *z* направлена ортогонально плоскости *xy* по ширине балки *L* – расстояние между опорами при трехточечном нагружении, *b* – высота балки, *a* – ширина, $h-1/2\Delta$ – высота нижнего слоя, $b-h-1/2\Delta$ – высота верхнего слоя, Δ – толщина диффузного слоя. В нижнем слое по центру балки сделан пропил глубиной *C* с торцевой кривизной радиуса *R* и шириной разреза 2*R* (рис.1).

Требуется определить прочность материала и вычислить вязкость разрушения при заданной критической величине нагрузки Р и исходных данных балки.

2. МЕТОД РЕШЕНИЯ

Для определения напряженного состояния в окрестности выреза мы разделим задачу на две: первая – изгиб полосы без выреза, вторая – вырез в полосе без удаленной внешней нагрузки нагружен по поверхности напряжениями, равными напряжениям первой задачи.

2.1. Решение первой задачи.

Двуслойная балка со слоями из упругих изотропных материалов находится в условиях трехточечного нагружения. Рассмотрение ведется с учетом гипотезы плоских сечений. Для выбранной системы координат имеем распределение упругих напряжений по сечению, ортогональному нейтральной оси, координата которой y_0 , E(y) – модуль Юнга, $\kappa(x)$ – кривизна нейтральной оси. Изменением напряжений по координате *z* пренебрегаем. В результате получается $\sigma^{(1)}(x, y) = \kappa(x)E(y)(y_0 - y)$, где

$$E(y) = \begin{cases} E_1, & y \in [0, h - 1/2\Delta) \\ \frac{(E_2 + E_1)}{2} + (E_2 - E_1)\frac{(y - h)}{\Delta}, & y \in [h - \frac{1}{2}\Delta, h + \frac{1}{2}\Delta] \\ E_2, & y \in (h + 1/2\Delta, b] \end{cases}$$
(1)

Запишем уравнения равновесия в силах и моментах

$$\begin{cases} \int_{0}^{b} \sigma^{(1)}(x, y) dy = 0, \\ a \int_{0}^{b} \sigma^{(1)}(x, y)(y_{0} - y) dy = M(x), \end{cases} \qquad M(x) = \begin{cases} \frac{P}{2}x, & x \in [0, L/2] \\ \frac{P}{2}(L-x), & x \in [L/2, L] \end{cases}$$

Введем безразмерные координаты и параметры

$$\chi = \frac{x}{L}, \quad \psi = \frac{y}{b}, \quad \xi = \frac{y_0}{b}, \quad \delta = \frac{\Delta}{b}, \quad \eta = \frac{h}{b}, \quad \gamma = \frac{E_1}{E_2}, \quad l = \frac{L}{b}, \quad p = \frac{P}{2E_2ab}$$

Запишем систему уравнений равновесия сил и моментов для $\chi \in [0, 1/2]$

$$\int_{0}^{\eta-1/2\delta} \gamma(\xi-\psi) d\psi + \int_{\eta-1/2\delta}^{\eta+1/2\delta} \frac{2(1-\gamma)(\psi-\eta) + (1+\gamma)\delta}{2\delta} (\xi-\psi) d\psi +$$
$$+ \int_{\eta+1/2\delta}^{1} (\xi-\psi) d\psi = 0$$
$$\int_{0}^{\eta-1/2\delta} \gamma(\xi-\psi)^{2} d\psi + \int_{\eta-1/2\delta}^{\eta+1/2\delta} \frac{2(1-\gamma)(\psi-\eta) + (1+\gamma)\delta}{2\delta} (\xi-\psi)^{2} d\psi +$$
$$+ \int_{\eta+1/2\delta}^{1} (\xi-\psi)^{2} d\psi = \frac{pl\chi}{\kappa(\chi)}$$

Из уравнения равновесия сил получаем координату нейтральной оси

$$\xi = \xi(\gamma, \eta, \delta) = \frac{1}{2} \frac{1 + \eta^2(\gamma - 1)}{1 + \eta(\gamma - 1)} + \frac{1}{24} \delta^2 \frac{(\gamma - 1)}{1 + \eta(\gamma - 1)}.$$
(2)

Из уравнения равновесия моментов выражаем кривизну

$$\kappa(\chi) = \frac{pl}{\mu}\chi, \qquad \mu = \frac{1}{12} \frac{\left((\gamma - 1)\left(\gamma \eta^4 - (\eta - 1)^4\right) + \gamma\right)}{\left(1 + \eta\left(\gamma - 1\right)\right)} + \frac{\delta^2}{8} \frac{(\gamma - 1)\left(\gamma \eta^2 - (\eta - 1)^2\right)}{\left(1 + \eta\left(\gamma - 1\right)\right)} - \frac{5\delta^4}{576} \frac{(\gamma - 1)^2}{\left(1 + \eta\left(\gamma - 1\right)\right)}.$$
(3)

490

Подставляя (2) в (1), получаем для $\chi \in [0, 1/2]$

$$\sigma^{(1)}(\chi,\psi) = \begin{cases} E_2\kappa(\chi)\gamma(\xi-\psi), & \psi \in [0,\eta-1/2\delta) \\ E_2\kappa(\chi)\left[\frac{(1+\gamma)}{2} + (\gamma-1)\frac{(\psi-\eta)}{\delta}\right](\xi-\psi), & \psi \in [\eta-1/2\delta,\eta+1/2\delta] \\ E_2\kappa(\chi)(\xi-\psi), & \psi \in (\eta+1/2\delta,1] \end{cases}$$

Диффузный слой устраняет разрыв в продольных напряжениях, равный при его нулевой толщине $pl(\xi - \eta)\chi(1 - \gamma)/\mu$, см. рис.2.

Максимум растягивающих напряжений будет достигнут на нижнем крае, при $\psi = 0, \ \chi = 1/2$

$$\sigma_{\max}^{(1)}(\gamma,\eta) = \frac{1}{2} \frac{lp}{\mu_0} \gamma \xi(\gamma,\eta,\delta) = \frac{1}{4} \frac{lp}{\mu_0} \gamma \left(\frac{1+\eta^2(\gamma-1)}{1+\eta(\gamma-1)} + \frac{1}{12} \delta^2 \frac{(\gamma-1)}{1+\eta(\gamma-1)} \right).$$
(4)

Из условия равенства нулю производной напряжения на краю по η (пропорции толщин слоев) при постоянной γ (отношения модулей Юнга слоев) получаем условия экстремума по η , и с учетом ограничения $\eta \in [0,1]$ получаем координаты локальных экстремумов для величины растягивающего напряжения на нижнем крае балки, см. рис.3.

Для $0 < \gamma < 1$: локальный максимум $\eta_1 = (1 + \sqrt{\gamma})^{-1}$, локальный минимум $\eta_2 = \left[\sqrt{3}\cos\left(\frac{1}{3}\arctan\left(\frac{\sqrt{\gamma}}{\sqrt{1-\gamma}}\right) + \frac{\pi}{6}\right) - \sin\left(\frac{1}{3}\arctan\left(\frac{\sqrt{\gamma}}{\sqrt{1-\gamma}}\right) + \frac{\pi}{6}\right)\right](1-\gamma)^{-1/2}$.

Для $\gamma > 1$: локальный минимум $\eta_1 = 1 + \sqrt{\gamma}$, локальный максимум $\eta_3 = \left(1 + \sqrt{\gamma/(\gamma - 1)}\right)^{\frac{1}{3}} (\gamma - 1)^{-\frac{1}{3}} - \left(1 + \sqrt{\gamma/(\gamma - 1)}\right)^{-\frac{1}{3}} (\gamma - 1)^{-\frac{2}{3}}.$

При существенной малости толщины диффузионного слоя $(\delta \ll 10^{-6})$ [5] мы в дальнейших выкладках пренебрежем им и будем использовать следующие равенства

$$\xi = \frac{1}{2} \frac{1 + \eta^2 (\gamma - 1)}{1 + \eta \gamma - 1}, \quad \kappa(\chi) = \frac{pl}{\mu} \chi, \quad \mu = \frac{1}{12} \frac{\left(\gamma + (\gamma - 1) \left(\gamma \eta^4 - (\eta - 1)^4\right)\right)}{\left(1 + \eta (\gamma - 1)\right)}.$$
(5)

2.2. Решение второй задачи.

Ограничимся случаем, когда вырез полностью находится в нижнем слое. Поверхность бокового надреза глубины *С* нижнего слоя балки нагружена растягивающими вдоль оси балки напряжениями.

Решение второй задачи мы будем проводить аналогично [7], но в наших обозначениях и с учетом вида поля напряжений в двуслойной балке, где c = C/b

$$\sigma^{(2)}(0,\psi) = \frac{2}{\pi} \psi \int_{0}^{c} \frac{\sigma^{(1)}(0,t)\sqrt{c^{2}-t^{2}}}{\sqrt{\psi^{2}-c^{2}}(\psi^{2}-t^{2})} dt, \quad \psi > c.$$

Подставляем значения поля напряжений из первой задачи и получаем

$$\sigma^{(1)}(1/2,\psi) = \frac{pl\gamma}{2\mu_0}(\xi - \psi),$$

$$\sigma^{(2)}(1/2,\psi) = \frac{pl\gamma}{2\mu_0}(\xi - \psi) \left(\frac{\psi}{\sqrt{\psi^2 - c^2}} - 2\right).$$

Получим напряжения вне трещины

$$\sigma(1/2,\psi) = \sigma^{(1)}(1/2,\psi) + \sigma^{(2)}(1/2,\psi) = \frac{pl\gamma}{2\mu}(\xi - \psi)\left(\frac{\psi}{\sqrt{\psi^2 - c^2}} - 1\right).$$

При приближении со стороны нейтральной оси к кончику трещины мы, вводя замены S = ab, $\rho = b(\psi - c)$, будем иметь

$$\sigma(0,\rho) = \frac{K_I}{\sqrt{2\pi\rho}}, \quad K_I = \frac{P}{S}\sqrt{\pi C}Y, \quad Y = \frac{l\gamma(\xi-c)}{4\mu}.$$
(6)

3. ОБСУЖДЕНИЕ И ВЫВОДЫ

В случае однослойной балки $\delta = 0$, $\eta = 1$, $\gamma = 1$ из (2) следует, что положение нейтральной оси $\xi = 1/2$, а соотношение кривизны, момента и жесткости будет классическим для прямоугольного поперечного сечения. Тарировочная функция Y из (6) будет иметь вид $Y_1 = 12(1-2c)$, который мы сравним с $Y_2 = 12(1.107 - 2.12c + 7.71c^2 - 13.55c^3 + 14.25c^4)$ – классическим выражением из [8].

На рис.4. показана зависимость отношения тарировочных функций для диапазона глубины надреза c < 0.1, то есть не более 10% от толщины балки. Отличие нарастает при увеличении глубины надреза от 10% до 20%.

Для гладкого двуслойного композита получены зависимости (4) максимального растягивающего напряжения от пропорций толщин и модулей упругости слоев и определены локальные экстремумы.

Для балки с боковым надрезом получена тарировочная функция, учитывающая соотношение толщин и модулей Юнга слоев. Данные результаты приведены для дальнейшего использования в анализе экспериментальных данных по разрушению при трехточечной схеме нагружения двуслойных образов, в частности, полученных методом самораспространяющегося высокотемпературного синтеза.

ЛИТЕРАТУРА

- Bazhin P.M., Konstantinov A.S., Chizhikov A.P., Pazniak A.I., Kostitsyna E.V., Prokopets A.D., Stolin A.M. Laminated cermet composite materials: The main production methods, structural features and properties (review) / Ceramics International. – 2021. – Vol.47. – Iss.2. – Pp.1513-1525.
- Bazhina A., Konstantinov A., Chizhikov A., Bazhin P., Stolin A., Avdeeva V. Structure and mechanical characteristics of a layered composite material based on TiB/TiAl/Ti // Ceramics International. – 2022. – Vol.48. – Iss.10. – Pp.14295-14300.
- Prokopets A.D., Bazhin P.M., Konstantinov A.S., Chizhikov A.P., Antipov M.S., Avdeeva V.V. Structural features of layered composite material TiB2/TiAl/Ti6Al4V obtained by unrestricted SHS-compression // Materials Letters. – 2021. – 130165.
- Прокопец А.Д., Константинов А.С., Чижиков А.П., Бажин П.М., Столин А.М. Закономерности формирования структуры градиентных композиционных материалов на основе MAX-фазы Ti3AlC2 на титане // Неорганические материалы. – 2020. – Т.56. – №10. – С.1145-1150.

- 5. Бажин П.М., Столин А.М., Константинов А.С., Чижиков А.П., Прокопец А.Д., Алымов М.И. Особенности строения слоистых композиционных материалов на основе боридов титана, полученных методом свободного CBC-сжатия // Доклады академии наук. – 2019. – Т.488. – №3. – С.263-266.
- 6. Мусхелишвили Н.И. *Некоторые основные задачи математической теории упругости.* М.: Наука, 1966. 708 с.
- 7. Панасюк В.В., Андрейкив А.Е., Ковчик С.Е. *Методы оценки трещиностойкости конструкционных материалов.* Киев: Наукова думка, 1977. 279 с.
- Мураками Ю. Справочник по коэффициентам интенсивности напряжений. М.: Мир, 1990. – 448 с.

REFERENCES

- 1. Bazhin P.M., Konstantinov A.S., Chizhikov A.P., Pazniak A.I., Kostitsyna E.V., Prokopets A.D., Stolin A.M. *Laminated cermet composite materials: The main production methods, structural features and properties (review)*. Ceramics International, 2021, Vol.47, Iss.2, Pp.1513-1525.
- 2. Bazhina A., Konstantinov A., Chizhikov A., Bazhin P., Stolin A., Avdeeva V. *Structure and mechanical characteristics of a layered composite material based on TiB/TiAl/Ti.* Ceramics International, 2022, Vol.48, Iss.10, Pp.14295-14300.
- 3. Prokopets A.D., Bazhin P.M., Konstantinov A.S., Chizhikov A.P., Antipov M.S., Avdeeva V.V. *Structural features of layered composite material TiB2/TiAl/Ti6Al4V obtained by unrestricted SHS-compression*. Materials Letters, 2021, 130165.
- 4. Prokopec A.D., Konstantinov A.S., Chizhikov A.P., Bazhin P.M., Stolin A.M. Zakonomernosti formirovaniya struktury gradientnykh kompozitsionnykh materialov na osnove MAX-fazy Ti3AlC2 na titane [Regularities of the formation of the structure of gradient composite materials based on the MAX-phase Ti3AlC2 on titanium]. Neorganicheskie materialy, 2020, Vol.56, No.10, Pp.1145-1150.
- 5. Bazhin P.M., Stolin A.M., Konstantinov A.S., Chizhikov A.P., Prokopec A.D., Alymov M.I. Osobennosti stroeniya sloistykh kompozitsionnykh materialov na osnove boridov titana, poluchennykh metodom svobodnogo SVS-szhatiya [Structural features of layered composite materials based on titanium borides obtained by free SHS compression]. Doklady akademii nauk, 2019, Vol.488, No.3, Pp.263-266.
- 6. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoj teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Moskva, Nauka, 1966, 708 p.
- 7. Panasyuk V.V., Andrejkiv A.E., Kovchik S.E. Metody otsenki treshhinostojkosti konstruktsionnykh materialov [Methods for assessing the crack resistance of structural materials]. Kiev, Naukova dumka, 1977, 279 p.
- 8. Murakami Yu. Spravochnik po koehffitsientam intensivnosti napryazhenij [Handbook of stress intensity coefficients]. Moskva, Mir, 1990, 448 p.

Поступила в редакцию 25 октября 2022 года.

Сведения об авторе:

Хвостунков Кирилл Анатольевич – к.ф.-м.н., доц., Кафедра теории пластичности Механикоматематического факультета МГУ, ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», г. Москва, Россия; e-mail: <u>khvostunkov@gmail.com</u>