УДК 621.793 + 621.762.55 + 620.193.5 EDN FNHUEQ (<u>https://elibrary.ru/fnhueq</u>) DOI 10.33113/mkmk.ras.2023.29.04.03

УВЕЛИЧЕНИЕ СТОЙКОСТИ ПОКРЫТИЯ ZrSi₂-M₀Si₂-ZrB₂-ZrC К ОКИСЛЕНИЮ И АБЛЯЦИИ В СКОРОСТНОМ ВЫСОКОЭНТАЛЬПИЙНОМ ПОТОКЕ ВОЗДУШНОЙ ПЛАЗМЫ^{*}

Астапов А.Н.¹, Жестков Б.Е.², Сукманов И.В.¹, Терентьева В.С.¹

¹ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)», г. Москва, Россия ²ФАУ «Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского», г. Жуковский, Россия

АННОТАЦИЯ

Выполнена корректировка ранее рассмотренного состава порошковой смеси в системе ZrSi₂-MoSi₂-ZrB₂-Si в сторону снижения содержания относительно легкоплавких фаз ZrSi₂, MoSi₂ и увеличения доли тугоплавкой фазы ZrB₂. Сформировано жаростойкое покрытие на C/C-SiC композите методом обжигового наплавления порошковой смеси при температуре 1750°С и давлении разрежения аргона 150-200 Па. Фазовый состав покрытия включает, мол. %: 23.2 ZrSi₂, 16.8 MoSi₂, 46.0 ZrB₂ и 14.0 ZrC. Синтез вторичной фазы ZrC осуществляется in situ в результате реакционного взаимодействия в системе ZrSi₂-C. Проведены испытания на стойкость к окислению и абляции в условиях обтекания и нагрева поверхности в интервале T_w = 1300-2350 °C потоком воздушной плазмы при скорости 4.7-4.8 км/с и энтальпии торможения 48-50 МДж/кг. Показано, что выполненная корректировка состава обеспечила увеличение защитной способности покрытия при $T_w = 2200$ °C в 2.5 раза – вплоть до 170 с, а также повышение максимально допустимого уровня рабочих температур с $T_{w} = 2200$ до 2350°С. При этом средние значения удельной потери массы и скорости уноса массы покрытия снизились на 23 и 14% и составили 3.9 мг/см² и 13.1 мг/(см² ч) соответственно. Получены оценки для значений константы скорости гетерогенной рекомбинации атомов и ионов воздушной плазмы на поверхности покрытия: $K_w = 2 \pm 1, 5 \pm 2, 9 \pm 3, 14 \pm 3$ и 19 ± 2 м/с при $T_w = 1300-1450$, 1500-1750, 1800-1950, 2000-2150 и 2200-2350 °C соответственно. Установлено снижение спектральной излучательной способности покрытия ε_{λ} от 0.69 ± 0.02 в исходном состоянии до 0.41 ± 0.02 после огневых испытаний в интервале длин волн $\lambda = 600-900$ нм при комнатной температуре. Показано, что основными факторами, ограничивающими ресурс защитного действия покрытия, являются сквозное окисление матрицы ZrSi2 и испарение модифицированного цирконием боросиликатного стекла, приводящее к увеличению в оксидной пленке доли фазы ZrO2 с высокой анионной проводимостью и каталитической активностью.

Ключевые слова: покрытие; синтез; окисление; абляция; оксидная пленка; массоперенос; воздушная плазма; каталитичность; излучательная способность

^{*}Исследование выполнено за счет гранта Российского научного фонда №22-29-01476

IMPROVEMENT OF ZrSi₂-M₀Si₂-ZrB₂-ZrC COATING RESISTANCE TO OXIDATION AND ABLATION IN A HIGH-SPEED, HIGH-ENTHALPY AIR PLASMA FLOW

Astapov A.N.¹, Zhestkov B.E.², Sukmanov I.V.¹, Terentieva V.S.¹

¹Moscow Aviation Institute (National Research University), Moscow, Russia ²Central Aerohydrodynamic Institute, Zhukovsky, Russia

ABSTRACT

The previously considered composition of the powder mixture in the ZrSi₂-MoSi₂-ZrB₂-Si system was adjusted in the direction of reducing the content of the relatively low-melting phases ZrSi₂, MoSi₂ and increasing the proportion of the refractory phase ZrB₂. A heat-resistant coating was formed on a C/C-SiC composite by firing the fusion of a powder mixture at a temperature of 1750°C and an argon rarefaction pressure of 150-200 Pa. The phase composition of the coating includes, they say. %: 23.2 ZrSi₂, 16.8 MoSi₂, 46.0 ZrB₂ and 14.0 ZrC. The synthesis of the ZrC secondary phase is carried out in situ as a result of reaction interaction in the ZrSi₂-C system. Tests on oxidation and ablation resistance under flow and surface heating conditions the range $T_w = 1300-2350$ °C with an air plasma flow at a speed of 4.7-4.8 km/s and a stagnation enthalpy of 48-50 MJ/kg. It is shown that the performed adjustment of the composition provided an increase in the protective ability of the coating at $T_w = 2200$ °C

in 2.5 times – up to 170 s, as well as increasing the maximum permissible operating temperatures level from $T_w = 2200$ to 2350°C. At the same time, the average values of specific mass loss and mass loss rate of the coating decreased by 23 and 14% and amounted to 3.9 mg/cm² and 13.1 mg/(cm²·h), respectively. Estimates were obtained for the values of the rate constant of heterogeneous recombination of air plasma atoms and ions on the coating surface: $K_w = 2\pm 1, 5\pm 2, 9\pm 3, 14\pm 3$ and 19 ± 2 m/s at $T_w = 1300-1450, 1500-1750, 1800-1950, 2000-2150$ and 2200-2350 °C, respectively. The spectral emissivity of the coating ε_{λ} was found to decrease from 0.69 ± 0.02 in the initial state to 0.41 ± 0.02 after fire tests in the wavelength range $\lambda = 600-900$ nm at room temperature. It is shown that the main factors limiting the resource of protective effect of the coating are the through oxidation of ZrSi₂ matrix and evaporation of ZrO₂ phase with high anionic conductivity and catalytic activity.

Keywords: coating; synthesis; oxidation; ablation; oxide film; mass transfer; air plasma; catalyticity; emissivity

ВВЕДЕНИЕ

В настоящее время углерод-углеродные и углерод-керамические композиционные материалы рассматривают как наиболее перспективные для высокотемпературных применений в несущих конструкциях и теплозащитных системах ракетно-космической техники [1-3]. Нанесение жаростойких покрытий является эффективным методом повышения их антиокислительных свойств, устойчивости к эрозии и абляции.

В работе [3] исследовано жаростойкое покрытие экспериментального состава в системе ZrSi₂-MoSi₂-ZrB₂-ZrC. Его защитная способность на C/C-SiC композите в условиях взаимодействия с потоком воздушной плазмы при скорости

4.7-4.8 км/с и энтальпии торможения 48-50 МДж/кг составила не менее 600 с при температуре на поверхности $T_w = 1900$ °C, не менее 400 с при $T_w = 2000$ °C, не менее 220 с при $T_w = 2100$ °C и не менее 70 с при $T_w = 2200$ °C. Повышение уровня рабочих температур и ресурса защитного действия покрытия возможно за счет снижения доли относительно легкоплавких фаз – матричной ZrSi₂ ($T_{nn} = 1620$ °C) и армирующей MoSi₂ ($T_{nn} = 2020$ °C) при увеличении доли тугоплавкой армирующей фазы ZrB₂ ($T_{nn} = 3245$ °C). Это предположение обусловлено несколькими факторами в совокупности.

Во-первых, уменьшение доли легкоплавких компонентов значительно снизит массоперенос реагентов через жидкую фазу (эвтектика (Si + ZrSi₂ + MoSi₂), Si, ZrSi₂) [4,5], что приведет к замедлению скорости окисления покрытия при эксплуатации.

Во-вторых, уменьшение доли силицидов ZrSi₂ и MoSi₂ в покрытии снизит долю газообразных продуктов (SiO и CO), генерируемых при окислении в результате взаимодействия элементарного Si и SiC с пленкой SiO₂ на ее внутренней границе по реакциям [3]

$$\begin{aligned} \operatorname{SiO}_{2(m,\infty)} + \operatorname{Si}_{(\infty)} &\to 2\operatorname{SiO}_{(\varepsilon)} \left(\Delta G < 0 \ \kappa \mbox{Дж/моль при} \ T > 1508^{\circ} \mbox{C} \right), (1) \\ 2\operatorname{SiO}_{2(m,\infty)} + \operatorname{SiC}_{(m)} &\to 3\operatorname{SiO}_{(\varepsilon)} + \operatorname{CO}_{(\varepsilon)} \\ \left(\Delta G < 0 \ \kappa \mbox{Дж/моль при} \ T > 1552^{\circ} \mbox{C} \right). \end{aligned}$$

$$(2)$$

Это в свою очередь снизит вероятность образования полостей и каналов в формирующейся оксидной пленке, что обеспечит повышение ее сплошности, а, значит, и газоплотности. Следует отметить, что термодинамические расчеты реакций (1) и (2) проведены при остаточном давлении $P_{ocm} = 3$ кПа, что соответствует условиям проведения огневых экспериментов в данной работе.

В-третьих, увеличение доли тугоплавкой фазы ZrB_2 повысит температуроустойчивость основного слоя покрытия и снизит упругость пара синтезируемого при окислении боросиликатного стекла, модифицированного катионами циркония [1,3,6]. К тому же уменьшение доли стеклофазы в результате снижения концентрации силицидов $ZrSi_2$ и MoSi₂ приведет к росту доли тугоплавкого оксида ZrO_2 ($T_{nn} = 2700$ °C) в составе пленки. Это благоприятно отразится на ее стойкости к абляции.

Целью настоящего исследования является корректировка ранее рассмотренного состава порошковой смеси в системе $ZrSi_2$ -MoSi_2-ZrB_2-Si, получение из нее покрытия на C/C-SiC композите методом обжигового наплавления и изучение его окислительной и абляционной стойкости в условиях обтекания и нагрева высокоскоростной воздушной плазмой вплоть до 2350°C. Работа является эволюционным развитием ранее выполненного исследования [3], в котором фазовый состав порошковой композиции включал, мол. %: 45 ZrSi_2, 23 MoSi_2, 17 ZrB_2 и 15 Si. В настоящем исследовании состав смеси скорректировали в соответствии с вышеприведенным обоснованием до следующего, мол. %: 37 ZrSi_2, 14 MoSi_2, 39 ZrB_2 и 10 Si.

1. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Исходными компонентами являлись порошок ZrSi₂ TV 6-09-03-15-75 дисперсностью 30-45 мкм, порошок MoSi₂ TV 6-09-03-395-74 дисперсностью

30-45 мкм, порошок ZrB₂ TV 6-09-03-46-75 дисперсностью 8-10 мкм и порошок Si электронного качества, полученный размолом монокристаллов марки КЭФ-4.5, с размером частиц 45-63 мкм. Порошки смешивали и совместно измельчали до дисперсности 8-10 мкм в среде изопропилового спирта в высокоэнергетической шаровой мельнице SamplePrep 8000 M-230 (Spex, США) в контейнере из WC объемом 55 мл. В качестве мелющих тел использовали шары из WC диаметром сыпучести, 11.2 мм. Для улучшения снижения количества связанной и адсорбированной влаги, а также загрязнений органической природы осуществляли прокаливание порошковой композиции в протоке аргона в течение 5 ч при 350°С.

формировали методом обжигового Покрытие наплавления слоев из полученной порошковой смеси. В качестве подложки использовали образцы в виде дисков размером Ø30×8.5 мм из углерод-керамического композита класса C/C-SiC на основе вискозной углеродной ткани и комбинированной матрицы из кокса фенольной смолы, пиролитического углерода и SiC. Порошковую композицию смешивали с раствором коллоксилина В амилацетате и диэтилоксалате в соотношении 1:1.5. Полученную суспензию наносили на образцы кистью, а затем сушили на воздухе при температуре 80°C в течение 30 мин. Термическую обработку проводили до температуры 1750°С в вакуумной печи СШВЭ-1.2.5/25 И2 (ООО «ОЗ ВНИИЭТО», Россия) при давлении аргона в камере 150-200 Па.

Газодинамические испытания образцов выполняли на аэродинамическом Россия), стенде BAT-104 (ФАУ «ЦАГИ», оснащенном индукционным плазмотроном, по методике, изложенной в [3]. В процессе испытаний процессы термохимического взаимодействия моделировали образцов со скоростным потоком воздушной плазмы для условий полета перспективных возвращаемых летательных аппаратов в атмосфере Земли на высоте 80-100 км. Параметры модельного потока воздушной плазмы, как и в [3], находились в пределах: скорость 4.7-4.8 км/с; энтальпия торможения 48-50 МДж/кг; давление газа перед образцами – до 3.3 кПа; степень диссоциации воздуха 85-90%. Образцы устанавливали на расстоянии 56.0 мм от среза сопла плазмотрона диаметром 53.7 мм. Увеличение средней температуры поверхности образцов в процессе испытаний осуществляли путем ступенчатого повышения давления в форкамере подогревателя P₀ при постоянной мощности питания анода $W_a = 215 \pm 3$ кВт. Температуру на фронтальном торце образцов T_w в процессе испытаний измеряли пирометром VS-CTT-285/E/P-2001 (ООО «Видеоскан», Россия) на длине волны 890 нм с учетом поправки на спектральную степень черноты покрытия в интервале $0.4 \le \varepsilon_{\lambda} \le 0.7$. Взвешивание образцов проводили на аналитических весах GR-202 (AND, Япония) с точностью 10⁻⁴ г.

Спектральную излучательную способность покрытия ε_{λ} при комнатной температуре определяли через отражательную способность, измеряемую с помощью спектрофотометра SPECORD M40 (Carl Zeiss Iena, Германия). В качестве стандарта использовали сульфат бария BaSO₄ с коэффициентом отражения равным 1. Константу скорости гетерогенной рекомбинации атомов и ионов K_w на активных центрах поверхности покрытия определяли по разности плотности теплового потока к эталонному и исследуемому составам в соответствии с методикой, изложенной в [3]. В качестве эталона использовали образцы из C/C-SiC композита с покрытием в системе Si-TiSi₂-MoSi₂-TiB₂ [5].

Микроструктурные исследования выполняли использованием с сканирующего электронного микроскопа (СЭМ) EVO-40 (Carl Zeiss, Германия), оснащенного рентгеновским энергодисперсионным спектрометром (ЭДС) X-Max (Oxford Instruments, Великобритания). Съемку вели во вторичных электронах. Элементный состав определяли при ускоряющем напряжении 8-15 кВ и токе зонда 0.5-3.0 нА. Съемку рентгенограмм выполняли по схеме Брэгга-Брентано на дифрактометре ARL X'tra (Thermo Fisher Scientific, Швейцария) с детектором Пельтье и медным анодом Си K_a. Съемку вели с шагом 0.02° при радиусе гониометра 520 мм со скоростью 0.5° /мин в интервале углов $2\theta = 15-110^{\circ}$. Для выполнения качественного рентгенофазового анализа (РФА) применяли программу Crystallographica Search-Match V.3.1.0.0 (Oxford Cryosystems, Великобритания) и базу данных эталонных рентгенограмм ICDD PDF-2 (2010 г.). Расчет изобарно-изотермического потенциала ΔG (свободной энергии Гиббса) возможных химических реакций при синтезе и окислении проводили с помощью online-калькулятора FACT, разработанного в Ecole Polytechnique and McGill University (Канада) [7].

2. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

2.1. Состав и структура покрытия на С/С-SiC композите.

В таблице 1 приведен фазовый состав исходной порошковой смеси и сформированного из нее покрытия на C/C-SiC композите (по данным PФA). Основными фазами в составе покрытия являются первичные фазы ZrSi₂, MoSi₂ и ZrB₂. Кроме того, отмечается появление в покрытии вторичной фазы ZrC в количестве 14.0 мол. % и исчезновение элементарного кремния. Синтез фазы ZrC осуществляется *in situ* в результате химического взаимодействия ZrSi₂ с углеродом, образующимся вследствие пиролиза органического связующего в процессе термической обработки, а также диффундирующим из подложки C/C-SiC. Механизм реакционного взаимодействия в системе ZrSi₂-C подробно рассмотрен в работе [3].

Таблица 1.

na komnosnie e/ e sie.					
Образец	Содержание фаз, мол. %				
	ZrSi ₂	MoSi ₂	ZrB_2	Si	ZrC
	(Cmcm)	(I4/mmm)	(P6/mmm)	(Fd-3m)	(Fm-3m)
Порошковая смесь	37.0	14.3	39.1	9.6	-
Синтезированное покрытие	23.2	16.8	46.0	-	14.0

Фазовый состав исходной порошковой смеси и сформированного покрытия на композите C/C-SiC.

Сравнительный анализ фазового состава сформированного покрытия (таблица 1) и покрытия, исследованного в работе [3], показывает, что выполненная корректировка состава порошковой смеси обеспечила снижение в покрытии объемной доли матричной ZrSi₂ и армирующей MoSi₂ фаз на 34 и 60% соответственно при одновременном увеличении объемной доли тугоплавкой фазы ZrB₂ на 110% и сохранении доли вторичной тугоплавкой фазы ZrC ($T_{nn} = 3490 \,^{\circ}$ C) на прежнем уровне (14.0 мол. % ≈ 9.5 об. %). Дальнейшее снижение содержания матричной фазы ZrSi₂ нецелесообразно. Это объясняется необходимостью сохранения в формируемом покрытии минимально потребной

доли легкоплавкой фазы ZrSi₂ (~32-33 об. %) для обеспечения высоких показателей сплошности структуры и самозалечивающих свойств.

Согласно данным СЭМ и ЭДС, микроструктура покрытия представлена матрицей из ZrSi₂, внутри которой равномерно распределены частицы ZrB₂ в виде вытянутых до 5-8 мкм кристаллов правильной огранки, кубовидные частицы ZrC субмикронного размера и полиэдрические зерна MoSi₂ размером до 15-20 мкм. Увеличение линейных размеров зерен MoSi₂ по сравнению с их размером с процессами перекристаллизации, порошке связано характерными В для жидкофазного спекания [3]. Толщина полученного покрытия находится в пределах 90-120 мкм (в зависимости от рельефа поверхности композита). Схематическое изображение микроструктуры покрытия на композите с детализацией отмеченных фаз представлено на рис.1 в виде слоя 2 на подложке 1.

Рис.1. Схематическое изображение эволюции структуры покрытия в результате окисления и абляции в процессе огневого эксперимента. Слои: 1 – подложка из C/C-SiC композита; 2 – сформированное покрытие в системе ZrSi₂-MoSi₂-ZrB₂-ZrC; 3 – подслой оксидной пленки на основе спеченных частиц ZrO₂ и прослоек стеклофазы; 4 – наружная часть оксидной пленки с высокой пористостью, образованной в результате испарения стеклофазы.

2.2. Результаты газодинамических испытаний покрытия.

Испытания проводили в условиях ступенчатого газодинамического нагрева потоком воздушной плазмы в диапазоне температур на фронтальной поверхности образцов $T_w = 1300-2350 \,^{\circ}\text{C}$. Давление в форкамере подогревателя P_0 изменяли от 10 до 25 кПа с шагом 5 кПа, а далее до 32.5 кПа с шагом 2.5 кПа. Время выдержки на каждой ступени испытаний τ составляло 120 с, за исключением ступеней при $P_0 = 30.0$ и 32.5 кПа, для которых $\tau = 150$ и 180 с соответственно. Объем выборки в этих экспериментах составил четыре образца. В целом установлена хорошая воспроизводимость опытных данных, свидетельствующая об идентичности физико-химических процессов, происходящих в исследуемом покрытии при его взаимодействии с воздушной плазмой, и о малой величине случайных ошибок.

Типичные результаты огневых экспериментов представлены на рис.2 в виде оценочных интервалов температур на фронтальном торце образца T_w (кривые 1 и 2) и профиля давления в форкамере подогревателя P_0 (кривая 3). Здесь же приведена фотография с изображением фронтальной поверхности покрытия после испытаний. Средние значения удельной потери массы и скорости уноса массы покрытия за время огневого эксперимента составили 3.9 мг/см² и 13.1 мг/(см²·ч) соответственно. Это ниже на 23 и 14% соответственно, чем для покрытия, исследованного в работе [3].

Из рис.2 видно, что защитная способность покрытия при температуре на поверхности $T_w = 2200$ °C возросла в 2.5 раза в сравнении с составом, исследованным в работе [3], и составила не менее 170 с. При увеличении температуры вплоть до $T_w = 2350$ °C покрытие сохраняет работоспособность не менее 110 с, тогда как для состава, рассмотренного в [3], максимально допустимый уровень температуры составил $T_w = 2200$ °C.

Рис.2. Результаты газодинамических испытаний образца C/C-SiC с покрытием в системе ZrSi₂-MoSi₂-ZrB₂-ZrC и внешний вид фронтальной стороны образца после испытаний: 1, 2 – оценочный интервал температур в критической точке фронтальной поверхности T_w , ограниченный сверху и снизу степенью черноты $\varepsilon_{\lambda} = 0.4$ и 0.7 соответственно; 3 – давление в форкамере подогревателя P_0 .

Установлено изменение спектральной излучательной способности покрытия ε_{λ} от 0.69 ± 0.02 в исходном состоянии до 0.41 ± 0.02 после огневых испытаний в интервале длин волн $\lambda = 600$ -900 нм при комнатной температуре. Снижение степени черноты покрытия в процессе испытаний связано с образованием поверхностной оксидной пленки на основе ZrO₂. Изменение степени черноты покрытия в процессе огневых экспериментов определило необходимость рассмотрения интервала температур в критической точке фронтальной поверхности образцов. С высокой степенью вероятности можно ожидать, что истинная температура T_w в начале испытаний, когда $\varepsilon_{\lambda} = 0.69 \pm 0.02$, будет близка к нижней границе, а после интенсификации процесса испарения боросиликатного стекла с поверхности при ~1750-1800 °C, когда ε_{λ} снижается

до 0.41 ± 0.02 , T_w будет определяться верхней границей (рис.2).

Обработка экспериментальных данных огневых испытаний позволили получить дополнительную информацию о каталитической активности покрытия по отношению к реакциям гетерогенной рекомбинации атомов и ионов воздушной плазмы (O, N, O⁺, N⁺, NO⁺). Полученные значения константы скорости гетерогенной рекомбинации K_w находятся в пределах 2 ± 1 , 5 ± 2 , 9 ± 3 , 14 ± 3 и 19 ± 2 м/с при $T_w = 1300-1450$, 1500-1750, 1800-1950, 2000-2150 и 2200-2350 °C соответственно. Видно, что K_w монотонно возрастает с увеличением температуры T_w , что позволяет отнести покрытие к категории средне каталитичных.

Согласно данным СЭМ и ЭДС, в процессе огневого эксперимента на поверхности покрытия образуется относительно плотная гетерогенная 90-120 мкм. Схематическое изображение оксилная пленка толщиной микроструктуры формирующейся оксидной пленки с детализацией первичных и вторичных фаз приведено на рис.1. В наружной части пленки (слой 4) наблюдается значительное количество пор и разветвленных каналов, образующихся В результате испарения боросиликатного стекла, Ниже модифицированного катионами циркония. расположен подслой из спеченных частиц ZrO₂ с единичными прослойками стеклофазы (слой 3). При этом сплошность структуры данного подслоя увеличивается по мере продвижения вглубь. Выявлена различная степень окисления частиц MoSi2 по толщине оксидной пленки. В поверхностном слое присутствуют включения металлического Мо или оксида МоО₂, в объеме оксидной пленки – включения фаз Mo₃Si и Mo₅Si₃, а на границе раздела «оксидная пленка – покрытие» – исходные зерна MoSi₂ или включения со структурой ядро из MoSi₂ в оболочке из Мо₅Si₃. Объяснение данного эффекта рассмотрено в работе [3]. Ниже находится неокисленный слой покрытия (слой 2) толщиной до 15-20 мкм, что говорит о неполном исчерпании его защитных свойств при выбранном режиме огневых испытаний.

Для проведения РФА оксидную пленку стачивали алмазным надфилем с фронтальной поверхности образцов, а затем равномерно размещали тонким слоем на неотражающем монокристалле кварца. Качественно результаты РФА хорошо согласуются с результатами структурных исследований. Основной кристаллической фазой в составе пленки является m-ZrO₂ в моноклинной сингонии, наряду с которой присутствуют вторичные фазы Mo₅Si₃, Mo₃Si и твердый раствор Mo_{0.875}Zr_{0.125} на основе металлического молибдена. Наличие первичных фаз ZrSi₂, ZrB₂, ZrC и MoSi₂ свидетельствует о неполном окислении покрытия в процессе огневого эксперимента. Проведение количественного РФА невозможно по причине высокой степени гетерофазности исследуемой пробы и эффекта взаимного наложения рефлексов от разных фаз.

2.3. Механизм защитного действия покрытия.

При окислении покрытия образуется гетерогенная оксидная пленка. Она представлена поверхностным слоем боросиликатного стекла, модифицированного катионами циркония, с отдельно расположенными в нем частицами ZrO₂ и подслоем на основе ZrO₂ и SiO₂. Реакции окисления компонентов покрытия и взаимодействия продуктов окисления представлены в работе [3]. Часть синтезируемого стекла сохраняется в объеме оксидной пленки, другая часть –

поверхность, обеспечивая переносится на формирование сплошного стекловидного слоя. Основной движущей силой апвеллинга является объемное ZrSi₂. расширение, главным образом в результате окисления Синтез боросиликатного стекла снижает вязкость расплава и облегчает его транспорт к поверхности.

Растворение катионов циркония в стекле может протекать как по механизму внедрения, так и путем замещения катионов Si [3,6]. Образование более термодинамически устойчивой связи Zr-O относительно Si-O обусловливает увеличение высокотемпературной стабильности модифицированного стекла и снижение упругости пара.

Формирование внешнего стекловидного слоя создает эффективный барьер для диффузии кислорода, что способствует пассивации процессов окисления. Увеличение рабочих температур T_w свыше 1750-1800°С приводит к испарению стеклофазы с поверхности оксидной пленки и образованию пористой структуры на основе ZrO₂ с низким коэффициентом теплопроводности (термобарьерый слой). В результате по толщине покрытия наблюдается градиент температуры, что способствует частичному сохранению стеклофазы во внутренних слоях из-за снижения упругости пара и приводит к торможению диффузии кислорода вглубь покрытия. Наличие фаз, находящихся при эксплуатации в жидкотекучем (эвтектика (Si+ZrSi₂+MoSi₂), Si, ZrSi₂) или вязко-текучем (SiO₂·B₂O₃) состояниях, обеспечивает эффективное удаление газообразных продуктов (SiO, CO, B₂O₂, MoO₃) и залечивание возникающих дефектов и несплошностей.

Основной причиной потери работоспособности покрытия является сквозное окисление матрицы ZrSi₂ и испарение стеклофазы, в результате чего на поверхности остается пористый спек на основе ZrO2 с высокой анионной проводимостью. После полного исчерпания ресурса защитного действия покрытия начинается активное окисление матричной фазы SiC композита в результате взаимодействия с пленкой SiO₂ на ее внутренней границе по реакции (2). Это приводит к появлению, росту и разрыву газонаполненных пузырей в оксидной пленке, что влечет за собой потерю ее сплошности в результате «взламывания» изнутри. Окисление композита переходит из пассивного режима результате области В активный В смены протекания реакций на внешнедиффузионную. Увеличение температур способствует интенсификации отмеченных процессов.

выводы

1. Сформировано жаростойкое покрытие на C/C-SiC композите методом обжигового наплавления порошковой смеси в системе $ZrSi_2$ -MoSi_2-ZrB_2-Si при температуре 1750°C и давлении разрежения аргона 150-200 Па. Фазовый состав покрытия включает, мол. %: 23.2 ZrSi_2, 16.8 MoSi_2, 46.0 ZrB_2 и 14.0 ZrC. Синтез вторичной фазы ZrC осуществляется *in situ* в результате реакционного взаимодействия в системе ZrSi_2-C.

2. Проведены огневые испытания покрытия в условиях аэрогазодинамического обтекания и нагрева в интервале температур на его поверхности $T_w = 1300-2350$ °C потоком воздушной плазмы при скорости 4.7-4.8 км/с и энтальпии торможения 48-50 МДж/кг. Показано, что корректировка состава в сравнении с исследованным в [3], обеспечила увеличение защитной способности покрытия при $T_w = 2200$ °C в 2.5 раза – вплоть до 170 с, а также

повышение максимально допустимого уровня рабочих температур с $T_w = 2200$ до 2350°С. При этом средние значения удельной потери массы и скорости уноса массы покрытия снизились на 23 и 14% и составили 3.9 мг/см² и 13.1 мг/(см²·ч) соответственно.

3. Получены оценки для значений константы скорости гетерогенной рекомбинации атомов и ионов воздушной плазмы на поверхности покрытия: $K_w = 2\pm 1, 5\pm 2, 9\pm 3, 14\pm 3$ и 19 ± 2 м/с при $T_w = 1300-1450, 1500-1750, 1800-1950, 2000-2150$ и 2200-2350°С соответственно. Установлено изменение спектральной излучательной способности покрытия ε_{λ} от 0.69 ± 0.02 в исходном состоянии до 0.41 ± 0.02 после огневых испытаний в интервале длин волн $\lambda = 600-900$ нм при комнатной температуре. Снижение ε_{λ} связано с образованием поверхностной оксидной пленки на основе ZrO₂.

4. Показано, что основными факторами, ограничивающими ресурс защитного действия покрытия, являются сквозное окисление матрицы $ZrSi_2$ и испарение модифицированного цирконием боросиликатного стекла, приводящее к увеличению в оксидной пленке доли фазы ZrO_2 с высокой анионной проводимостью и каталитической активностью.

ЛИТЕРАТУРА

- Ni D., Cheng Y., Zhang J., Liu J.-X., Zou J., Chen B., Wu H., Li H., Dong S., Han J., Zhang X., Fu Q., Zhang G.-J. *Advances in ultra-high temperature ceramics, composites, and coatings* // Journal of Advanced Ceramics. – 2022. – Vol.11. – No.1. – Pp.1-56. DOI: 10.1007/s40145-021-0550-6.
- Астапов А.Н., Жаворонок С.И., Курбатов А.С., Рабинский Л.Н., Тушавина О.В. Основные проблемы при создании систем тепловой защиты на базе структурно-неоднородных материалов и методы их решения // Теплофизика высоких температур. – 2021. – Т.59. – №2. – С.248-279. DOI: 10.31857/S0040364421020010.
- 3. Астапов А.Н., Жестков Б.Е., Погодин В.А., Сукманов И.В. Окислительная стойкость покрытия ZrSi₂-MoSi₂-ZrB₂-ZrC на C/C-SiC композите в скоростном высокоэнтальпийном потоке воздушной плазмы // Механика композиционных материалов и конструкций. 2023. Т.29. №1. С.98-114. DOI: 10.33113/mkmk.ras.2023.29.01.07.
- 4. Silvestroni L., Meriggi G., Sciti D. Oxidation behavior of ZrB₂ composites doped with various transition metal silicides // Corrosion Science. 2014. Vol.83. Pp.281-291. DOI: 10.1016/j.corsci.2014.02.026.
- 5. Терентьева В.С., Астапов А.Н. Концептуальная модель защиты особожаропрочных материалов в гиперзвуковых потоках окислительного газа // Известия вузов. Порошковая металлургия и функциональные покрытия. – 2017. – №3. – С.51-64. DOI: 10.17073/1997-308X-2017-3-51-64.
- 6. Cheng C., Li H., Fu Q., Guo L., Sun J., Yin X. *Effect of Zr doping on the hightemperature stability of SiO*₂ *glass* // Computational Materials Science. – 2018. – Vol.147. – Pp.81-86. DOI: 10.1016/j.commatsci.2018.01.051.
- 7. Facility for the analysis of chemical thermodynamics, <u>https://www.crct.polymtl.ca/factweb.php</u>. Дата обращения 06.11.2023.

REFERENCES

- Ni D., Cheng Y., Zhang J., Liu J.-X., Zou J., Chen B., Wu H., Li H., Dong S., Han J., Zhang X., Fu Q., Zhang G.-J. *Advances in ultra-high temperature ceramics, composites, and coatings.* Journal of Advanced Ceramics, 2022, Vol.11, No.1, Pp.1-56. DOI: 10.1007/s40145-021-0550-6.
- Astapov A.N., Zhavoronok S.I., Kurbatov A.S., Rabinskiy L.N., Tushavina O.V. Main problems in the creation of thermal-protection systems based on structurally heterogeneous materials and the methods of their solution: A Review. High Temperature, 2021, Vol.59, No.2-6, Pp.346-372. DOI: 10.31857/S0040364421020010.
- 3. Astapov A.N., Zhestkov B.E., Pogodin V.A., Sukmanov I.V. Okislitel'naya stojkost' pokrytiya ZrSi₂-MoSi₂-ZrB₂-ZrC na C/C-SiC kompozite v skorostnom vysokoehntal'pijnom potoke vozdushnoj plazmy [Oxidation resistance of ZrSi₂-MoSi₂-ZrB₂-ZrC coating on C/C-SiC composite in a high-speed high-enthalpy flow of air plasma]. Mekhanika kompozitsionnykh materialov i konstruktsii, 2023, Vol.29, No.1, Pp.98-114. DOI: 10.33113/mkmk.ras.2023.29.01.07.
- 4. Silvestroni L., Meriggi G., Sciti D. Oxidation behavior of ZrB₂ composites doped with various transition metal silicides. Corrosion Science, 2014, Vol.83, Pp.281-291. DOI: 10.1016/j.corsci.2014.02.026.
- 5. Terentieva V.S., Astapov A.N. *Conceptual protection model for especially heatproof materials in hypersonic oxidizing gas flows*. Russian Journal of Non-Ferrous Metals, 2018, Vol.59, No.6, Pp.709-718. DOI: 10.3103/S1067821218060172.
- 6. Cheng C., Li H., Fu Q., Guo L., Sun J., Yin X. *Effect of Zr doping on the hightemperature stability of SiO*₂ glass. Computational Materials Science, 2018, Vol.147, Pp.81-86. DOI: 10.1016/j.commatsci.2018.01.051.
- 7. Facility for the analysis of chemical thermodynamics, <u>https://www.crct.polymtl.ca/factweb.php</u>, 2023, November 6.

Поступила в редакцию 20 ноября 2023 года.

Сведения об авторах:

Астапов Алексей Николаевич – к.т.н., доц., кафедра «Перспективные материалы и технологии аэрокосмического назначения», с.н.с. НИО-9 ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)», г. Москва, Россия; e-mail: lexxa1985@inbox.ru

Жестков Борис Евгеньевич – к.т.н., с.н.с., нач. лаб. №17 НИО-8 ФАУ «Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского», г. Жуковский, Россия; e-mail: bzhestkov@mail.ru

Сукманов Игорь Владимирович – асп., кафедра «Перспективные материалы и технологии аэрокосмического назначения», инженер НИО-9 ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)», г. Москва, Россия; e-mail: igor8385@yandex.ru

Терентьева Валентина Сергеевна – д.т.н., проф., кафедра «Перспективные материалы и технологии аэрокосмического назначения», в.н.с. НИО-9 ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)», г. Москва, Россия; e-mail: <u>k903ter@mai.ru</u>